Ionization of the Gas Curtain of the BGC and tracking of ions and electrons at the HEL

Denys Klekots

(Taras Shevchenko National University of Kyiv)

<u>denys.klekots@cern.ch</u> <u>denys.klekots@gmail.com</u>

Introduction

Electric and magnetic fields of electron beam

- □ Fields of the proton beam
- Particle tracking
- □Ions accumulation
- Conclusion

Introduction

 $ec{v}_g$

The gas (Ne) sheet is used to measure beams overlap and cross section.
 Side effect - it creates electron-ion pairs.

Proton beam parameters				
σ_x, σ_y	306 µm			
σ_{z}	8.3 cm			
Q	3,25 · 10 ^{−8} C (Gauss)			
E_p	7 TeV			
Electron beam parameters				
I _e		5 A (uniform)		
E _e		10 keV		
r_0		2,5 mm		
R		5 mm		

\vec{v}_n	Gas sheet parameters		
	$ ho_g$	$8 \cdot 10^{16} m^{-3}$ (uniform)	
	v_g	800 m/s	
	Thickness	2,2 mm	
	Tilt angle	45°	

 \vec{v}_e

Magnetic "bottle"

The external B field is weaker in the gas location.

The magnetic lines form the "bottle" structure.

□ It is possible to have the ionised particle trapped inside "bottle".

Study ionised particle movement.

Study distribution of the ionised particles in BGC.

Can the ionised particles escape from the BGC location?

□Are the additional clearing electrodes needed?

How does the used code work?

Using Runge-Kutta 4th order method.

■Simulated in the cylindrical volume ∓1,7 m (center @ gas sheet) and 3 cm in R.

$$\dot{\vec{p}}(t) = q\left(\left[\vec{v}(t) \times \vec{B}(\vec{r},t)\right] + \vec{E}(\vec{r},t)\right)$$
$$\dot{\vec{r}}(t) = v(t)$$
$$\vec{p}(t) = \frac{m\vec{v}(t)}{\sqrt{1 - \frac{v(t)^2}{c^2}}}$$

Electromagnetic field from external magnets, proton and hollow electron beams.

Each ionized particle is tracked independently.

External field interpolation

d - mesh step (d = 1 cm in our simulation)

Interpolation by the following formula:

$$B(x, y, z) = A_1 x y z + A_2 x y + A_3 x z + A_4 y z + A_5 x + A_6 y + A_7 z + A_8$$

 A_i are determined by solving linear equation.

Sameed.

Electric & magnetic fields of electron beam

12.12.2023

Proton bunch field in rest frame

Proton bunch field in LHC frame

0.030

0.025

0.02

108

106

E [V/m]

The field in the grounded pipe

Proton bunch field in LHC frame, crosscheck

 ρ is with Gaussian distribution.

$$\vec{j} = \rho \vec{v}$$

12.12.2023

Initial parameters (\vec{r}, \vec{v}) of ionised particles

- Parameters of e^- taken from Geant4 simulation with low-energy physics.
- The initial \vec{v} of the protons were "artificially" set to the same as neon atoms.
- The ionization rate of electron beam is about $5,39 \cdot 10^{12} s^{-1}$

Ionisation by proton beam is 870 times smaller (neglected).

Ionised particles motion

Ions movement

Electrons movement

Final energy of the ionised particles

The ionised particle energies at the edge of the simulated volume.

Ion density mesh

The mesh contains the cylindrical layers.

 $\Box dV = 2\pi \, dz \, \rho d\rho.$

 $\Box dN$ - number of particles inside the mesh layer.

$$\Box n(\rho, z) = \frac{dN}{dV} - \text{ ions density.}$$

Equilibrium ions density

p [m]

The peak value of the ion's density is 7 orders lower than the electron's density in a hollow beam.

The electric field created by ions is negligibly small.

12.12.2023

Accumulated ions quantity

Time, µs	1 turn gas on	2 turns gas on	2 nd turn e beam off
86	gas e beam p beam	gas e beam p beam	gas e beam p beam
86 – 89	nothing	nothing	nothing
89	e beam p beam	gas e beam p beam	gas p beam

Conclusion

The results of the simulations show the following:

□Ionised electrons are escaping fast, drawn by proton beam;

□Ions are also escaping but drifting slowly;

□Ionised particles are not trapped inside the magnetic "bottle";

The number of ions decreases fast if there is no ionisation, it tells us that the clearing electrodes might not be necessary.

To be continued

□Improve the electric field of the electron beam;

Tracking of the ionised particles in the entire volume, including electron collector and gun;

Study influence of the proton beam on the electron beam and the changing of the beam's field;

□Improving the simulation of the gas ionisation.

□Wrapping developed code to the user oriented toolbox.

Thank you for your attention

Any questions?

Backup slides

Electric & magnetic fields of electron beam

Reasoning to develop a custom code

Computation time

□Flexibility to implement electromagnetic field

□Flexibility to implement beams' time and space parameters

□ Flexibility to define simulation outputs

□Flexibility to define simulation volume

Benchmarks of the developed code.

The code was checked with module tests.

The code was checked to have the same tracking output as the Virtual-IPM

The calculation speed was compared with the Virtual-IPM in the same simulation and was 11.2 times faster in single-thread mode. (23 sec on our program, 4 min 15 sec on Virtual-IPM)

□ The developed code is highly parallel. Reduces computing time by a factor of parallel threads number.

Electrons are escaping very fast

lons are moving much slower

Ion movement

Accumulation of ions

12.12.2023

Correction field (due to beam pipe grounding)

Correction field (due to beam pipe grounding)

$$\begin{cases} \Delta \varphi(z,\rho) = 0\\ -\frac{\partial \varphi(z,\rho=R)}{\partial z} = E_z^b(z,R) \end{cases}$$

$$\varphi(z,\rho) = \int_{-\infty}^{\infty} e^{ikz} f(k) I_0(k\rho) dz$$

$$E_z^b(k,R) = \frac{2}{\sqrt{2\pi}} \int_0^\infty \sin(kz) E_z^b(z,R) dz$$

$$E_z(z,\rho) = \frac{2}{\sqrt{2\pi}} \int_0^\infty \sin(kz) E_z^b(k,R) \frac{I_0(k\rho)}{I_0(kR)} dk$$
$$E_\rho(z,\rho) = \frac{-2}{\sqrt{2\pi}} \int_0^\infty \cos(kz) E_z^b(k,R) \frac{I_1(k\rho)}{I_0(kR)} dk$$

e^- vs p^+ beam ionisation ratio

$$\frac{R_e}{R_p} = \frac{\sigma_e I_e}{\sigma_p I_p} \approx 870$$

$$I_p = \frac{Q}{\tau} = \frac{3,25 \cdot 10^{-8}C}{25 \cdot 10^{-9}s} = 1,3A$$
Bethe-Bloch: $\sigma_p = 2\pi r_e^2 Z_{Ne} m_e c^2 \left\langle \frac{1}{I} \right\rangle$

$$\left\langle \frac{1}{I} \right\rangle = 12,17 \cdot 10^{-3} eV^{-3}$$

$$\sigma_p = 3,1 \cdot 10^4 \ barn$$

 $\square R_e$ is much higher compared to R_p .

The estimate is consistent with the Geant4 simulation.

