

Science and Technology Facilities Council

Experiments at the Cockcroft Institute 2023

Alex Webber-Date & Hao Zhang

Interferometry Measurements of Gas Jets

- Interferometry is a method of determining gas-jet density
- Uses difference in refractive index between jet and vacuum to produce a phase shift
- Density resolution limited to ~10¹⁸ molecules per cm³, thus only applied to pulsed jet currently.
- Multi-Pass interferometry could increase density range (aiming at smaller nozzle with continuous flow)
- A 4x pass system is implementable with no vacuum geometry change

Mach-Zehnder and Nomarski Set-Up

Interferometry Results (Recap)

4

Multi-Pass Interferometry

- Techniques are only able to measure high densities
- Increasing signal strength essential for lower density measurements smaller nozzles and lower backing pressures
- Laser can be retroreflected through the jet region multiple times
- Double and even quadruple pass systems can be set up without changing the vacuum system

Double-Pass at the CI

- Double-pass system has been built at the CI
- Currently undergoing alignment

Publication potential in Nuclear Instruments – comparison with direct interceptive techniques

Pictures of the optics

Double-Pass Results

- Have preliminary results from the double-pass set-up
- Below are a comparison of the single and double pass system
- Double pass artificially shows twice the density signal strength is twice as large as expected

Interferometry – Next Steps

- Finish alignment for the 4x pass set-up
- Show increase in signal strength
- Move to lower densities on current 0.79mm nozzle reduce backing pressure
- Move to smaller nozzle sizes next target could be 100um nozzle.

New Test Stand (Jeremy)

Science and Technology Facilities Council

More pictures

Science and Technology Facilities Council

New Test Stand Features

- New test stand has been developed for gas jet research
- New Features:
- Linear actuator for gas injection
- Interferometry port for gas jet characterisation
- Moveable bellows skimmer mount
- Smaller profile that previous test stand

New gas jet test stand

Varying Nozzle – Skimmer 1 Distance

- X-Y Profile scans taken for different nozzle-skimmer 1 distances
- No Background Subtraction

Nozzle-Skimmer I Distance (nitrogen with 5 bar inlet pressure)

Z-Axis Scan

• Fitted using multi-term Gaussian (vertical: arbitrary unit)

Y-Axis Scan

• Fitted using multi-term Gaussian (not really Gaussian)

Summary

- Interferometry double pass system built and tested
- Moving towards a 4x pass system for increased sensitivity to lower density jets
- New gas jet test stand (JEREMY) is ready.
- Test measurements taken on new gas jet test stand at various nozzle – skimmer distances
- System can now be used for more in-depth studies

Other activities: Halo jet

Science and Technology Facilities Council

Simulation and experimental study of gas curtain formation

Quantum Jet Scanner – Pinhole system

- Schematic of gas jet used for pinhole measurements
- Electron beam can be scanned across the gas jet
- Movable gage can be used to characterise the density of the quantum jet

Science and

Technology Facilities Council

Future steps

• EBTS geometry test aiming at 60 mm jet on new gas jet test stand.

	nozzle	1 st skimmer	2 nd skimmer	3 rd skimmer
Available Sizes	30 um	600,700, 800 um	4 mm ~ 8 mm (using m4- m8 washer)	0.1 mm * 20 mm 0.1 mm * 30 mm 0.1 mm * 40 mm
Location	0	2 ~ 10 mm	25~35 mm	180.7 mm
Simulation		700 um	4.49 mm	0.11*26.4 mm
		4 mm	27.49 mm	168.5 mm

- Study on new gas jet test stand.
 - Jet density: Pitot tube VS Multi-pass interferometer VS Electron beam fluorescence.
 - Pulse nozzle study (parker nozzle, 0.1mm or 0.79 mm) with nozzle shape.
 - Plasma targets.
- Other applications (QuantumJet, QHAM, HaloJet)
- BGC for EBTS procurement

Science and Technology Facilities Council

Credit: Exp Fluids (2008) 45:501–511

Any Questions?

Extra Slides

Theory of Interferometric Imaging

Density of a gas related to refractive index by Lorentz-Lorenz equation:

$$\frac{(\eta^2 - 1)}{(\eta^2 + 2)} = \frac{4\pi}{3} \alpha N$$

n is refractive index, *N* is number of molecules per unit volume, α_m is mean polarisability of gas. As beam passes through jet, phase accumulates in the direction of propagation of laser, given by the Abel

$$\Delta \Phi(y) = \frac{4\pi}{\lambda} \int_{y}^{r_0} \frac{(n(r) - 1)r}{\sqrt{r^2 - y^2}} dr$$

where r_0 is radius far outside influence of jet and y is coordinate perpendicular to direction of beam. Assuming axisymmetric geometry of jet, density can be calculated using Abel inversion:

$$\frac{2\pi}{\lambda}(n(r)-1) = \frac{1}{\pi} \int_{r}^{r_0} \frac{d}{dy} \frac{\Delta \Phi(y)}{\sqrt{y^2 - r^2}} dy$$

This forms the basis of how the density of the gas jets can be calculated using the measured phase shift from the interferograms.

Nomarski Stability

Previous on-table set-up

Current on-chamber set-up

Science and Technology Facilities Council

References

- [1] P. A. P. Nghiem^{*}, N. Chauvin, W. Simeoni Jr., D. Uriot, "BEAM HALO DEFINITIONS AND ITS CONSEQUENCES" in Proc. HB'12, Beijing, China, Sep. 2012, paper THO3A04, pp. 511-513
- [2] T. P. Wangler and K. R. Crandall. Beam halo in proton linac beams. eConf, C000821:TU202, 2000
- [3] Oscar Frasciello. Wake Fields and Impedance Calculations of LHC Collimators' Real Structures. 07 2016.
- [4] A. Friedman, et al. "Computational Methods in the Warp Code Framework for Kinetic Simulations of Particle Beams and Plasmas," IEEE Trans. Plasma Sci. vol. 42, no. 5, p. 1321, May 2014.
- [5] O. Stringer, N. Kumar, C. P. Welsch, and H. D. Zhang, "A Gas Jet Beam Halo Monitor for LINACs", in Proc. 31st Linear Accelerator Conf. (LINAC'22), Liverpool, UK, Aug.-Sep. 2022, pp. 227-230.
- [6] Narender Kumar *et. Al* "DEVELOPMENT AND TESTING OF QUANTUM GAS JET BEAM PRO-FILE SCANNER" presented at the 14th International Particle Accelerator Conf. (IPAC'23), Venice, Italy, May 2023 paper THPL067, this conference.
- [7] John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd ed. edition, 1999.
- [8] Y. Ping, I. Geltner, A. Morozov, and S. Suckewer. Interferometric measurements of plasma density in microcapillaries and laser sparks. Physics of Plasmas, 9(11):4756–4766, 10 2002.

