Summary of Cl Simulations

O. Stringer, H. Zhang, A. Webber-Date, C. Welsch

Contents

- Test Particle Monte Carlo simulation introduction
- Multi-Objective Genetic Algorithm summary
- Optimised geometries
 - EBTS 60mm curtain
 - LHC Hadron only beam

Test Particle Monte Carlo Simulation

Figure 2: Animation of the Test Particle Monte-Carlo gas jet principal.

Injection Optimisation

Figure 3: Schematic of the injection parameter space used for the optimisation study.

Objective Space

Objective Parameter		Justification	Target
Number density	-	Proportional to signal received	$> 2 \times 10^{16} \ \#m^{-3}$
Length of jet	-	Maximum beam profile size	> 20 <i>mm</i>
Width of jet	-	Determines spatial resolution , signal yield and beam losses	< 1.5 <i>mm</i>
Density variation	-	Uniform profile measurement	< 20 %
Background Pressure	-	Minimise beam losses	$< 5 \times 10^{-8} mbar$

BGC Meeting 12/12/2023

5

MOGA Summary

- Some 26 million simulations ran over past 6 months
- Undergone several iterations of code
- Statistical error has been characterised
- Successful confidence testing for local optimum
- Started writing up MOGA work
- Most relevant two simulations presented

BGC V4 – EBTS Device

- BGC made for permanent use on the EBTS
- 60mm curtain,
 5E-8mbar
 background,
 N2 gas,
 different size
 constraints.

NIVERSITY

Results – 60mm New Dump

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	Variation in centre / %	BG Pressure / mbar
Optimised Value	1.38×10^{16}	60.28	0.24	3.89	3.86×10^{-8}

LHC – Hadron Only Beam (Ne gas)

Special Thanks

A. Jury, C. Swain, A. Pollard, N. Kumar

Monte-Carlo Statistical Error

- MC inherently a random simulation, statistically improved by more test particles, costing more computational power/time.
- Single solution (2bn particles generated), repeated 150 times from scratch with each final values recorded to determine the standard deviation

	Density / # m-3	Length / mm	Width / mm	Density variation / %	Background Pressure / mbar
SD	2.00×10^{14}	0.41	0.0059	0.94	1.98×10^{-11}
SD as % of mean	1.81%	0.72%	2.76%	18.18%	0.08%

Confidence Testing

- Take optimum solution
- Manually vary each size individually by some small value (delta << current size)
- Compare final score and include a consistency check with S.D. of Monte Carlo error

Solution	Initial Score	Best manual Score	S.D of initial score	Conditions at Best Manual
60mm	3.44	3.53	0.16	Skim 3 length + 0.6mm
60mm, DN63	3.07	3.23	0.24	Skim 3 length - 0.6mm

Within 1σ of initial score

Results – V3 (Benchmark)

Out of Date skimmer values (i.e tunnel is different), but still used for benchmark other sims

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	Variation in centre / %	BG Pressure / mbar
Optimised Value	1.81×10^{16}	20.8	0.52	5.73	2.10×10^{-8}

Results – 60mm

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	Variation in centre / %	BG Pressure / mbar
Optimised Value	1.34×10^{16}	60.89	0.23	3.23	3.93×10^{-8}

Results – Rectangular 2nd Skimmer

Criteria	Density / # m ⁻³	Curtain Length / mm	Curtain Width / mm	Variation in centre / %	BG Pressure / mbar
Optimised Value	1.36×10^{16}	59.31	0.23	3.43	4.84×10^{-8}

Chamber Pressure Profiles

All Pressures as BG chamber pressure, calculated with MC simulation – in mbar

	Nozzle	Skimmer 1	Skimmer 2	Interaction	Dump
V3	1.00×10^{-3}	4.82×10^{-6}	4.66×10^{-6}	2.09×10^{-8}	1.00×10^{-7}
60mm	9.95×10^{-4}	5.68×10^{-6}	2.34×10^{-5}	4.04×10^{-8}	1.14×10^{-7}
60mm, DN63	1.00×10^{-3}	3.65×10^{-6}	1.77×10^{-5}	6.08×10^{-8}	7.25×10^{-8}

Largest discrepancy between calculated and true measured value of BG in nozzle chamber, where transitional flow occurs. Converges to similar value at lower pressures.

