
FCC General Software Meeting

EDM4hep.jl
Analysing EDM4hep files with Julia

Pere Mato/CERN
26 February 2024

https://github.com/peremato/EDM4hep.jl

https://github.com/peremato/EDM4hep.jl

Why a new programming language?
❖ HEP needs a solution to the Two Language Problem

❖ C++ is fast but complex (and every day becoming more complex)

❖ Python is nice and easy but very slow (mitigated if you avoid loops)

❖ The community has developed ways to deal with these two
languages but we pay a price
❖ Interoperability is not always smooth (e.g. garbage collection side effects)

❖ Awkward constructions (e.g. the C++ strings in the PyRDF)

2

Why Julia?
❖ The Julia language was launched in 2012 (v1.0 in 2018) - New, but not immature!

❖ Modern imperative language, multi-paradigm with reflection and object orientation

❖ Robust built-in tooling (learning from earlier languages)
❖ Outstanding integrated package manager and build system

❖ Module system with excellent code reuse

❖ Modern tooling, with built in debuggers and profilers

❖ Interactive - REPL and full notebook support (it’s the “Ju” in Jupyter)

❖ Julia has been built from the ground up to be very fast
❖ JIT compilation via LLVM to native machine code

❖ Performance is comparable to C and C++ (as a baseline, see microbenchmarks)
3

https://julialang.org/benchmarks/

But, is Julia interesting for HEP?
❖ There exist many languages in the world

❖ Each has different strengths and weaknesses
❖ We think the answer is yes!

❖ Julia is specifically designed for numerical programming for science and engineering*
❖ So we are the target audience and the support for our use case is strong

❖ Julia is much easier to program in than C++
❖ Experience shows that students with Python experience can be productive in Julia very

quickly
❖ Code written in Julia is fast, often close to peak performance

❖ The first prototype can evolve naturally into the production code
❖ This overcomes the two language problem that we have today
❖ Wrappers allow integration with existing code in C++ and Python - vital for our existing codes

4*Julia used a lot in ASML, Boeing, Pfizer among others

EDM4hep - Introduction
❖ Based on the PODIO edm-toolkit

❖ use yaml-files to define EDM objects then
generate C++ code via Python/Jinja scripts

❖ three layers of classes (in C++)

❖ POD layer - the actual data in array of structs

❖ Object layer - add relations and vector
members

❖ User layer - thin handles and collections

❖ Default I/O backend: ROOT
5

C++

Julia

Data User &
POD layer

Motivation for EDM4hep.jl
❖ Generate Julia ‘friendly’ structures for the EDM4hep data model

❖ Be able to read event data files (in ROOT format) written by C++
programs from Julia (using the UnROOT.jl package)

❖ Later, be able also to write RNTuple files from Julia

Implementing EDM4hep in Julia is a pre-requisite for introducing the
Julia language in Simulation and Reconstruction workflows

6

Main Design Features
❖ All entities are immutable structs for better performance, SoA, GPUs, etc.

❖ POD with basic types and structs, including the relationships (one-to-one and one-to-many)
❖ Objects attributes cannot be changed, new instances must be created (Accessors.jl)

❖ Constructors have keyword arguments with reasonable default values
❖ New objects are by default not registered, they are “free floating”. Explicit registration or

setting relationships will register them to containers.
❖ Note that operations like register, setting relationships will automatically create a new

instances. The typical pattern is to overwrite the user variable with the new instance, e.g.:

❖ Reading EDM4hep containers from ROOT should result in StructArrays
❖ Very efficient access by column and the same time provide convenient views as object instances

7

p1 = MCParticle(...)
p1, d1 = add_daugther(p1, MCParticle(...))

StructArrays.jl
❖ Package that provides tools for working with

structs of arrays efficiently (SoA)
❖ Efficient Storage

❖ Struct arrays store elements contiguously in memory,
improving cache performance

❖ Type Stability
❖ Maintains type stability even when working with

arrays of structs
❖ Vectorized Operations

❖ Enables vectorized operations on arrays of structs,
similar to operations on standard arrays

❖ Compatibility
❖ Seamlessly integrates with other Julia packages and

tools
8

using StructArrays

Define a custom struct
struct Point
 x::Float64
 y::Float64
end

Create a struct array
points = StructArray([Point(1.0, 2.0),
 Point(3.0, 4.0),
 Point(5.0, 6.0)])

Access elements
println(points[1]) # Output: Point(1.0, 2.0)

PODIO Generation
❖ Written small Julia script to generate

Julia structs from YAML file
❖ Added a ObjectID to each object to

control its registration state

❖ Relations implemented with ObjectID
and Relation structs with just indices
(isbits())

❖ Two files: genComponents.jl,
genDatatypes.jl generated that
can be complemented with utility
methods

9

"""
struct MCParticle

 Description: The Monte Carlo particle - based on the lcio::MCParticle.
 Author: F.Gaede, DESY
"""
struct MCParticle <: POD
 index::ObjectID{MCParticle} # ObjectID of itself

 #---Data Members
 PDG::Int32 # PDG code of the particle
 generatorStatus::Int32 # status of the particle as defined by the ...
 simulatorStatus::Int32 # status of the particle from the simulation ...
 charge::Float32 # particle charge
 time::Float32 # creation time of the particle in [ns] wrt. ...
 mass::Float64 # mass of the particle in [GeV]
 vertex::Vector3d # production vertex of the particle in [mm].
 endpoint::Vector3d # endpoint of the particle in [mm]
 momentum::Vector3f # particle 3-momentum at the production vertex..
 momentumAtEndpoint::Vector3f # particle 3-momentum at the endpoint in [GeV]
 spin::Vector3f # spin (helicity) vector of the particle.
 colorFlow::Vector2i # color flow as defined by the generator

 #---OneToManyRelations
 parents::Relation{MCParticle,1} # The parents of this particle.
 daughters::Relation{MCParticle,2} # The daughters this particle.
end

"""
struct SimTrackerHit

 Description: Simulated tracker hit
 Author: F.Gaede, DESY
"""
struct SimTrackerHit <: POD
 index::ObjectID{SimTrackerHit} # ObjectID of itself
 #---Data Members
 cellID::UInt64 # ID of the sensor that created this hit
 EDep::Float32 # energy deposited in the hit [GeV].
 time::Float32 # proper time of the hit in the lab frame in ...
 pathLength::Float32 # path length of the particle in the sensiti ...
 quality::Int32 # quality bit flag.
 position::Vector3d # the hit position in [mm].
 momentum::Vector3f # the 3-momentum of the particle at the hits ...
 #---OneToOneRelations
 mcparticle_idx::ObjectID{MCParticle} # MCParticle that caused the hit.
end

Building the Event Model in Memory

10

#---MCParticles---
p1 = MCParticle(PDG=2212, mass=0.938, momentum=(0.0, 0.0, 7000.0), generatorStatus=3)
p2 = MCParticle(PDG=2212, mass=0.938, momentum=(0.0, 0.0, -7000.0), generatorStatus=3)

p3 = MCParticle(PDG=1, mass=0.0, momentum=(0.750, -1.569, 32.191), generatorStatus=3)
p3, p1 = add_parent(p3, p1)

p4 = MCParticle(PDG=-2, mass=0.0, momentum=(-3.047, -19.000, -54.629), generatorStatus=3)
p4, p2 = add_parent(p4, p2)

p5 = MCParticle(PDG=-24, mass=80.799, momentum=(1.517, -20.68, -20.605), generatorStatus=3)
p5, p1 = add_parent(p5, p1)
p5, p2 = add_parent(p5, p2)

p6 = MCParticle(PDG=22, mass=0.0, momentum=(-3.813, 0.113, -1.833), generatorStatus=1)
p6, p1 = add_parent(p6, p1)
p6, p2 = add_parent(p6, p2)

p7 = MCParticle(PDG=1, mass=0.0, momentum=(-2.445, 28.816, 6.082), generatorStatus=1)
p7, p5 = add_parent(p7, p5)

p8 = MCParticle(PDG=-2, mass=0.0, momentum=(3.962, -49.498, -26.687), generatorStatus=1)
p8, p5 = add_parent(p8, p5)

#---Simulation tracking hits---
for j in 1:5
 sth1 = SimTrackerHit(cellID=0xabadcaffee, EDep=j*0.000001, position=(j * 10., j * 20., j * 5.), mcparticle=p7)
 sth1 = register(sth1)
 sth2 = SimTrackerHit(cellID=0xcaffeebabe, EDep=j*0.001, position=(-j * 10., -j * 20., -j * 5.), mcparticle=p8)
 sth2 = register(sth2)
end

Relationships and Vector members
❖ ObjectID{ED} - implementing 1-to-1

❖ Acts as a reference to object of type ED in the
EDStore

❖ back and forth conversions

❖ Relation{ED} - implementing 1-to-N
❖ Represents a variable size vector (realised as 3

UInt32)

❖ PVector{T} - vector member
❖ POD-like vector of type T

❖ AbstractVector interface
11

struct PVector{ED<:POD,T, N} <: AbstractVector{T}
 first::UInt32 # first index (starts with 0)
 last::UInt32 # last index (starts with 0)
 collid::UInt32 # Collection ID of the data
end

Base.iterate(v::Relation{ED,TD,N}, i=1) where {ED,T,N}

struct ObjectID{ED<:POD} <: POD
 index::Int32
 collectionID::UInt32
end

Base.convert(::Type{ED}, i::ObjectID{ED}) where ED

struct Relation{ED<:POD,TD<:POD,N}
 first::UInt32 # first index (starts with 0)
 last::UInt32 # last index (starts with 0)
 collid::UInt32 # Collection ID of the data
end

Base.iterate(r::Relation{ED,TD,N}, i=1) where{ED,TD,N}

Layout in Memory
❖ EDM objects are created free-

floating
❖ They are registered in containers

explicitly or implicitly when setting
relationships

❖ To keep track of the containers
the struct EDStore{ED} has
been introduced
❖ Provided methods to control its

lifetime (init!(), empty!(), etc.)
12

“MCParticles”
#1

#3

Relation Relation

“parents”

ObjectID#1

#N

“daughters”

ObjectID

ObjectID

ObjectID

ObjectID

begin

end

begin

end

It looks complicated, but in reality is
completely transparent to the User

Navigating Relationships

13

for p in getEDStore(MCParticle).objects
 println("MCParticle $(p.index) with PDG=$(p.PDG) and momentum $(p.momentum) has $(length(p.daughters)) daughters")
 for d in p.daughters
 println(" ---> $(d.index) with PDG=$(d.PDG) and momentum $(d.momentum)")
 end
end

for s in getEDStore(SimTrackerHit).objects
 println("SimTrackerHit in cellID=$(string(s.cellID, base=16)) with EDep=$(s.EDep) and position=$(s.position)
 associated to particle $(s.mcparticle.index)")
end MCParticle #1 with PDG=1 and momentum (0.75,-1.569,32.191) has 0 daughters

MCParticle #2 with PDG=2212 and momentum (0.0,0.0,7000.0) has 3 daughters
 ---> #1 with PDG=1 and momentum (0.75,-1.569,32.191)
 ---> #5 with PDG=-24 and momentum (1.517,-20.68,-20.605)
 ---> #6 with PDG=22 and momentum (-3.813,0.113,-1.833)
MCParticle #3 with PDG=-2 and momentum (-3.047,-19.0,-54.629) has 0 daughters
MCParticle #4 with PDG=2212 and momentum (0.0,0.0,-7000.0) has 3 daughters
 ---> #3 with PDG=-2 and momentum (-3.047,-19.0,-54.629)
 ---> #5 with PDG=-24 and momentum (1.517,-20.68,-20.605)
 ---> #6 with PDG=22 and momentum (-3.813,0.113,-1.833)
MCParticle #5 with PDG=-24 and momentum (1.517,-20.68,-20.605) has 2 daughters
 ---> #7 with PDG=1 and momentum (-2.445,28.816,6.082)
 ---> #8 with PDG=-2 and momentum (3.962,-49.498,-26.687)
MCParticle #6 with PDG=22 and momentum (-3.813,0.113,-1.833) has 0 daughters
MCParticle #7 with PDG=1 and momentum (-2.445,28.816,6.082) has 0 daughters
MCParticle #8 with PDG=-2 and momentum (3.962,-49.498,-26.687) has 0 daughters
SimTrackerHit in cellID=abadcaffee with EDep=1.0e-6 and position=(10.0,20.0,5.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.001 and position=(-10.0,-20.0,-5.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=2.0e-6 and position=(20.0,40.0,10.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.002 and position=(-20.0,-40.0,-10.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=3.0e-6 and position=(30.0,60.0,15.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.003 and position=(-30.0,-60.0,-15.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=4.0e-6 and position=(40.0,80.0,20.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.004 and position=(-40.0,-80.0,-20.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=5.0e-6 and position=(50.0,100.0,25.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.005 and position=(-50.0,-100.0,-25.0) associated to particle #8

Integrated in the Julia ecosystem

14

using DataFrames
df = DataFrame(getEDStore(MCParticle).objects)

8×15 DataFrame
 Row │ index PDG generatorStatus simulatorStatus charge time mass vertex endpoint momentum momentumAtEndpoint spin colorFlow parents daughters ⋯
 │ ObjectID… Int32 Int32 Int32 Float32 Float32 Float64 Vector3d Vector3d Vector3f Vector3f Vector3f Vector2i Relation… Relation… ⋯
─────┼──
 1 │ #1 1 3 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (0.75,-1.569,32.191) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[2] MCParticle#[] ⋯
 2 │ #2 2212 3 0 0.0 0.0 0.938 (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,7000.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[] MCParticle#[1, 5,
 3 │ #3 -2 3 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (-3.047,-19.0,-54.629) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[4] MCParticle#[]
 4 │ #4 2212 3 0 0.0 0.0 0.938 (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,-7000.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[] MCParticle#[3, 5,
 5 │ #5 -24 3 0 0.0 0.0 80.799 (0.0,0.0,0.0) (0.0,0.0,0.0) (1.517,-20.68,-20.605) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[2, 4] MCParticle#[7, 8] ⋯
 6 │ #6 22 1 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (-3.813,0.113,-1.833) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[2, 4] MCParticle#[]
 7 │ #7 1 1 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (-2.445,28.816,6.082) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[5] MCParticle#[]
 8 │ #8 -2 1 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (3.962,-49.498,-26.687) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[5] MCParticle#[]
 1 column omitted

❖ Simple structs (isbits) and vectors of them integrate well with the rest of
the Julia ecosystem. Examples:
❖ A container of EDM4hep datatypes can be converted to a DataFrame immediately

❖ Very useful for GPU array programming

ROOT I/O
❖ Using UnROOT.jl package - a really great package!

❖ Supports (transparently) TTree and RNTuple formats and several
versions of PODIO storage
❖ data files consist exclusively of ‘collections-of-datatypes’ (e.g.

ReconstructedParticles, Vertices, etc.)

❖ The goal is to obtain a StructArray{DataType} of each collection
for each event
❖ The exercise consists in mapping the schema in the file (using ROOT streamer

info) to the actual Julia datatype (using the Julia introspection)
15

Creating SoAs from EDM4hep types
❖ UnROOT.jl provides the leaves

arrays (in a lazy manner) and they are
“mapped” to form SoA of a DataType

❖ Opens the possibility of schema
evolution
❖ filling empty attributes, type change, re-

shaping, etc.

16

using StructArrays

Create a struct array
hits = StructArray{SimTrackerHit}(Tuple(<TLeaf>...))

Access elements
println(hits[1]) # Output: SimTrackerHit(....)

x y z

i
n
d
e
x

c
e
l
l
I
D

E
d
e
p

t
i

m
e

x y z

position momentum

SimTrackerHit #1

SimTrackerHit #2

SimTrackerHit #N

...

.

.

.

SimTrackerHit #3

SoA provides a very Ergonomic interface
❖ Storage in memory consists of a

set of column arrays
❖ very fast access by column

❖ Materialize, when requested,
object instances (usually on the
stack) to be able to call user
object methods
❖ to achieve a user friendly access

17

julia> typeof(mcps[1])
MCParticle

julia> typeof(mcps.charge)
SubArray{Float32, 1, Vector{Float32},
Tuple{UnitRange{Int64}}, true}

julia> length(mcps.charge)
211

julia> mcps[1:2].momentum
2-element StructArray(::Vector{Float32}, ::Vector{Float32},
::Vector{Float32}) with eltype Vector3f:
 (0.5000167,0.0,50.0)
 (0.5000167,0.0,-50.0)

julia> sum(mcps[1:2].momentum)
(1.0000334,0.0,0.0)

Reading from a ROOT (TTree) File

18

using EDM4hep
using EDM4hep.RootIO

cd(@__DIR__)

f = "ttbar_edm4hep_digi.root"

reader = RootIO.Reader(f)
events = RootIO.get(reader, "events")

evt = events[1];

hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection")
mcps = RootIO.get(reader, evt, "MCParticle")

for hit in hits
 println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index) with name $(hit.mcparticle.name)")
end

#---Loop over events---
for (n,e) in enumerate(events)
 ps = RootIO.get(reader, e, "MCParticle")
 println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))")
end

Hit #1 is related to MCParticle #65 with name pi+
Hit #2 is related to MCParticle #65 with name pi+
Hit #3 is related to MCParticle #65 with name pi+
Hit #4 is related to MCParticle #65 with name pi+
Hit #5 is related to MCParticle #66 with name pi-
Hit #6 is related to MCParticle #66 with name pi-
Hit #7 is related to MCParticle #66 with name pi-
Hit #8 is related to MCParticle #49 with name pi+
Hit #9 is related to MCParticle #49 with name pi+
Hit #10 is related to MCParticle #49 with name pi+
Hit #11 is related to MCParticle #27 with name K-
Hit #12 is related to MCParticle #27 with name K-
Hit #13 is related to MCParticle #27 with name K-
Hit #14 is related to MCParticle #95 with name e-
Hit #15 is related to MCParticle #95 with name e-
...

~ 1500 times faster than Python

Example Analysis (FCCee)
❖ Created a more complete example of a FCCee analysis (higgs/mH-

recoil/mumu)

❖ These are the steps:
❖ 1. Installation and setup. No need to install anything (except for Julia itself :-))

❖ 2. Load the necessary modules (all registered!)

19

using EDM4hep
using EDM4hep.RootIO
using EDM4hep.SystemOfUnits
using EDM4hep.Histograms

https://github.com/HEP-FCC/FCCAnalyses/tree/b408bdc20de60cecb6d8fee2e6c3fe7ca680e5bc/examples/FCCee/higgs/mH-recoil
https://github.com/HEP-FCC/FCCAnalyses/tree/b408bdc20de60cecb6d8fee2e6c3fe7ca680e5bc/examples/FCCee/higgs/mH-recoil
https://julialang.org/downloads/

Example - Creating Analysis Functions
❖ 3. Creating analysis functions using EDM4hep types and reusing convenient

existing Julia packages (e.g. LorentzVectorHEP, Combinatorics)

❖ It shows the power of software re-use of Julia

20

re-using convenient existing packages
using LorentzVectorHEP
using Combinatorics

function resonanceBuilder(rmass::AbstractFloat, legs::AbstractVector{ReconstructedParticle})
 result = ReconstructedParticle[]
 length(legs) < 2 && return result
 for (a,b) in combinations(legs, 2)
 lv = LorentzVector(a.energy, a.momentum...) + LorentzVector(b.energy, b.momentum...)
 rcharge = a.charge + b.charge
 push!(result, ReconstructedParticle(mass=mass(lv), momentum=(lv.x, lv.y, lv.z), charge=rcharge))
 end
 sort!(result, lt = (a,b) -> abs(rmass-a.mass) < abs(rmass-b.mass))
 return result[1:1] # take the best one
end;

Use the EDM4hep
high-level objects

directly

Use Julia algorithms

Example - Define Histograms
❖ 4. Define a custom structure with the wanted histograms

❖ 5. And a function to plot them

21

using Parameters
using Plots
@with_kw struct Histograms
 mz = H1D("m_{Z} [GeV]",125,0,250, unit=:GeV)
 mz_zoom = H1D("m_{Z} [GeV]",40,80,100, unit=:GeV)
 lr_m = H1D("Z leptonic recoil [GeV]", 100, 0, 200, unit=:GeV)
 lr_m_zoom = H1D("Z leptonic recoil [GeV]", 200, 80, 160, unit=:GeV)
 ...
 lr_m_zoom4 = H1D("Z leptonic recoil [GeV]", 800, 120, 140, unit=:GeV)
 lr_m_zoom5 = H1D("Z leptonic recoil [GeV]", 2000, 120, 140, unit=:GeV)
 lr_m_zoom6 = H1D("Z leptonic recoil [GeV]", 100, 130.3, 132.5, unit=:GeV)
end
function do_plot(histos::Histograms)
 img = plot(layout=(5,2), show=true, size=(1000,1500))
 for (i,fn) in enumerate(fieldnames(Histograms))
 h = getfield(histos, fn)
 plot!(subplot=i, h.hist, title=h.title, show=true, cgrad=:plasma)
 end
 return img
end
myhists = Histograms()

Added a thin-layer
on top of FHist

histograms

Example - Open data file
❖ 6. Using a file from the winter2023 production in EOS

❖ ROOT file with a TTree called “events” with 100k events and 262 branches/
leaves

❖ PODIO version “0.16.2" (old layout of collections and relations)

22

f = "root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/p8_ee_ZZ_ecm240/
events_000189367.root"

reader = RootIO.Reader(f);
events = RootIO.get(reader, "events");

for evt in events
 #---get the collection of ReconstructedParticles and Muons
 recps = RootIO.get(reader, evt, "ReconstructedParticles");
 muons = RootIO.get(reader, evt, "Muon#0"; btype=ObjectID{ReconstructedParticle})

 sel_muons = filter(x -> pₜ(x) > 10GeV, muons)
 zed_leptonic = resonanceBuilder(91GeV, sel_muons)
 zed_leptonic_recoil = recoilBuilder(240GeV, zed_leptonic)

 if length(zed_leptonic) == 1 # Filter to have exactly one Z candidate
 Zcand_m = zed_leptonic[1].mass
 Zcand_recoil_m = zed_leptonic_recoil[1].mass
 Zcand_q = zed_leptonic[1].charge
 if 80GeV <= Zcand_m <= 100GeV
 #---Fill histograms now--------------------------------------
 push!(myhists.mz, Zcand_m)
 push!(myhists.mz_zoom, Zcand_m)
 push!(myhists.lr_m, Zcand_recoil_m)
 ...
 push!(myhists.lr_m_zoom6, Zcand_recoil_m)
 end
 end
end

Event sections

Example - The Event Loop

23

Get the needed collections.
The Muon#0 is a collection

of ObjectIDs (need to
specify the type)

Filter and create
new objects

Event sections

Fill the required
histograms

img = do_plot(myhists)
display("image/png", img)

Example - Results
❖ 8. Finally, plot the histograms

❖ histograms plots not very nice

❖ What about the performance?

❖ in this example we can process ~8200
events/s (on lcgapp-centos7-physical)

❖ somehow a bit slower than FCCAnalyses
framework (Python+C++) ~9500 events/s

❖ further optimisation makes only sense
with RNTuple

24

What’s Next?

❖ Validation of RNTuple with RC2

❖ Optimisation

❖ Multi-threading support

❖ Multi-file support

25

Conclusions
❖ Demonstrated that Data Analysis can be done using ‘high-level objects’ instead of

resigning yourself to use ‘flat n-tuples’
❖ And in a single and consistent programming language :-)

❖ Imagine Open Data analysis: very powerful with minimal required infrastructure

❖ The performance is not bad, but probably can be improved a bit further

❖ Missing quite a lot of HEP utilities
❖ e.g. utility functions, fitting, ergonomic and good looking histograms, etc.

❖ We could start building them from now

❖ Package EDM4hep.jl registered and ready to be used!
26

https://github.com/peremato/EDM4hep.jl

