Reminder: use of EDM4hep in FCC
analyses

Juraj Smiesko (CERN)
FCC Software Meeting
CERN, 26 Feb 2024

https://home.cern/
https://indico.cern.ch/event/1351111/
https://home.cern/
https://indico.cern.ch/event/1351111/

Set of common software packages, tools, and standards for different Detector

concepts
Common for FCC, CLIC/ILC, CEPC, EIC, ...

Individual participants can mix and match their stack

Main ingredients:

Data processing framework: Gaudi
Event data model: EDM4hep
Detector description: DD4hep
Software distribution: Spack

Key4dhep

Applications

EDM Database
Interfaces

Experiment Framework

DetSim EvGen
J —

Core HEP Libraries

OS Kernel and Libraries
(Non-HEP specific)

| Event Data Model: EDM4hep |

Generator | Simulation Recon- ~ Analysis
Whizard struction
! (Vertexing
P, - i Di(;;iezr;:;)(’m Jet Clustering
Tracking | Flavor Tagging |
< PFA :

l Detector Geometry: DD4hep

Source: Frank Gaede

https://key4hep.github.io/key4hep-doc/
https://gaudi.web.cern.ch/gaudi/
https://edm4hep.web.cern.ch/
https://dd4hep.web.cern.ch/dd4hep/
https://spack.io/
https://key4hep.github.io/key4hep-doc/
https://gaudi.web.cern.ch/gaudi/
https://edm4hep.web.cern.ch/
https://dd4hep.web.cern.ch/dd4hep/
https://spack.io/

EDM4hep |.

Describes event data with the set of standard objects.

e Specification in a single YAML file
o Generated with the help of Podio

EDM4hep DataModel Overview (v0.10)

RawCalorimeterHit

I . ParticlelD
SimCalorimeterHit MCRecoCaloAssociation |
' CalorimeterHit ~e—__| /
: ‘/ : id “x\ Cluster
CaloHitContribution /
j COLCD O

MCParticle - MCRecoParticlgAssociation T Reconstructed Particle

\~\
. Track
. MCRecoTrackerAssomathL)/ITrackerHit %% @ Vertex
SimTrackerHit <— < |

TrackerHitPlane

TrackerPulse Reconstruction &
Raw Data Digitization Analysis

RawTimeSeries
Monte Carlo

https://github.com/AIDASoft/podio
https://github.com/AIDASoft/podio

EDM4hep II.

Example object:

1 #----mmmmm oo - CalorimeterHit

2 edmdhep::CalorimeterHit:

3 Description:

4 Author:

5 Members:

6 - cellID // detector specific (geometrical) cell id
7 - energy [GeV] // energy of the hit

8 - energyError [GeV] // error of the hit energy
9 - time [ns] // time of the hit

10 - edmdhep: :Vector3f position [mm] // position of the hit in world coordinates
11 - type // type of hit

e Current version: v0.10.5
e Objects can be extended / new created
e Bi-weekly discussion: Indico

https://indico.cern.ch/category/11461/
https://indico.cern.ch/category/11461/

EDM4hep 1.0

The EDM4hep will reach version 1.0 soon, breaking changes and fixes are introduced.

Some of the changes/fixes underway:

e Interfaces

e ReconstructedParticle.type — ReconstructedParticle.PDG
e Reverse the direction of the ParticlelD relation(s)

e Vector of weights in EventHeader

1 edmdhep: :TrackerHit:

2 Description:

3 Author:

4 Members:

5 - cellID // ID of the sensor that created this hit
6 - type // type of the raw data hit

7 - quality // quality bit flag of the hit
8 - time [ns] // time of the hit

9 - eDep [GeV] // energy deposited on the hit
10 - eDepError [GeV] // error measured on eDep
11 - edmdhep: :Vector3d position [mm] // hit position
12 Types:

13 - edmdhep: :TrackerHit3D

14 - edmdhep: :TrackerHitPlane

New release of FCCAnalyses 0.9 — preserves state before EDM4hep 1.0 changes

o Will arrive in stable Key4hep stack soon

https://github.com/key4hep/EDM4hep/pull/252
https://github.com/key4hep/EDM4hep/pull/273
https://github.com/key4hep/EDM4hep/pull/268
https://github.com/key4hep/EDM4hep/pull/254
https://github.com/key4hep/EDM4hep/pull/252
https://github.com/key4hep/EDM4hep/pull/273
https://github.com/key4hep/EDM4hep/pull/273
https://github.com/key4hep/EDM4hep/pull/273
https://github.com/key4hep/EDM4hep/pull/273
https://github.com/key4hep/EDM4hep/pull/273
https://github.com/key4hep/EDM4hep/pull/268
https://github.com/key4hep/EDM4hep/pull/254

Podio

Generates Event Data Model and serves as |/O Layer soneraton _ P + 2T Jinja
e Generates EDM from YAML files / / \
e Employs plain-old-data (POD) data structures < %Ea%gg::waw{\
e 1/O machinery consists of three layers e B
= POD Layer - actual data structures
m Object Layer - helps resolve the relations “C A
» User Layer - full fledged EDM objects S =
e Supports multiple backends:
= ROOT, SIO, ... {HitCouection] User Layer
e Current version: 0.99 1--"»[j

Hit
'y

[HitObject }

Object Layer

1
Y

[HitData J POD Layer

https://github.com/AIDASoft/podio
https://github.com/AIDASoft/podio

Podio Reader

Constructs the EDM4hep objects for the user o Y .y Collection
rame s> S et
Example usage of Podio Reader in Pyhton: | Collection Jq<enfps _ Collection
Collection
1 from podio.root_io import Reader .
2 reader = Reader() Collection
3 for event in reader.get() . Std::me mutable owned by user
4 hits = store.get()) \—
5 for hit in hits:
6 # ...
Parameters

Datasets

Plethora of processes are pre-generated and available from EOS

Need to be reprocessed to be usable with EDM4hep 1.0

e Two main production campaigns in use:
= Spring 2021 | EDM4hep v0.3.1 | Podio v0.13
= Winter 2023 | EDM4hep v0.7.2 | Podio v0.16.2
e Samples are identified by their name, e.g.: p8 ee WW ecm240

e The production Database is browsable at:
fcc-physics-events.web.cern.ch

e Example samples list:

FCCee | Winter 2023 | IDEA | Delphes events
e EOS directory:

/eos/experiment/fcc/. ..

e Generation handled by EventProducer
» Heads up: Will change soon (Dirac, iLCDirac)

http://fcc-physics-events.web.cern.ch/
http://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php
https://github.com/HEP-FCC/EventProducer
https://github.com/DIRACGrid/DIRAC
https://gitlab.cern.ch/CLICdp/iLCDirac/ILCDIRAC
http://fcc-physics-events.web.cern.ch/
http://fcc-physics-events.web.cern.ch/fcc-physics-events/FCCee/winter2023/Delphesevents_IDEA.php
https://github.com/HEP-FCC/EventProducer
https://github.com/DIRACGrid/DIRAC
https://gitlab.cern.ch/CLICdp/iLCDirac/ILCDIRAC

EOS Space

Intermediate analysis files of common interest can be stored at:
/eos/experiment/fcc/ee/analyses storage/...

in four subfolders:

e BSM

e EW and QCD
e flavor

e Higgs and TOP

Access and quotas:

e Read access is is granted to anyone

e Write access needs to be granted: Ask your convener :)
e Total quota for all four directories is 200TB

e ATM only part of the quota is allocated

ROOT RDataFrame

[histo
/ Xy |

Filter Define o
- ———— [histo)

Describes processing of data as actions on table columns
» Defines of new columns

» Filter rules

» Result definitions (histogram, graph)

he actions are lazily evaluated

Multi threading is available out of the box
Optimized for bulk processing

Allows integration of existing C++ libraries

10

Reading EDM4hep in RDataFrame

e EDM4hep collection is read in by RDataFrame directly and presented to the user in form:

1 const : :VecOps: :RVec<edmdhep: :ReconstructedParticleData>& coll

= This is per event
= No convenient access to relationships

e Example of a simple function:

1 float getMass(const : :VecOps: :RVec<edmdhep: :ReconstructedParticleData>& in) {
2 : :Math::LorentzVector<ROOT: :Math: :PxPyPzE4D<double>> result;

3

4 for (auto & p: in) {

5 ::Math: :LorentzVector<ROOT: :Math: :PxPyPzE4D<double>> tmp;

6 tmp. E(p.momentum.x, p.momentum.y, p.momentum.z, p.energy),
7 result+=tmp;

g 1}

9

10 return result.M();

11 3}

e |n the course of the analysis the EDM4hep slowly decays into more trivial objects

11

EDM4hep DataModel Overview (v0.10)

MCRecoCaloAssociation

oo
Pa\‘t’\c\eP\‘-”";‘OG‘a
\0

MCRecoParticl

MCRecoTrackerAssociation

Raw Data

12

Relations

e One collection can contain one-to-one or one-to-many relations to other collections, e.g.:

= CaloHit 3 CaloHitContribution
= MCParticle 3 MCParticle

e Typically relationships between derived objects (Sim. side separated from Reco. side)

A 4 4

) 4 4

e Example analyzer (FCC Tutorials link):

1 std::vector<int> (1, ROOT::VecOps::RVec<edmdhep: :MCParticleData> in, ROOT: :VecOps: :RV
2 std: :vector< > res;

3 // 1 = index of a MC particle in the Particle block

4 // 1n = the Particle collection

5 // ind = the block with the indices for the daughters, Particle#1.index

6

7 // returns a vector with the indices (in the Particle block) of the stable daughters of the particle 1,
8 // from the complete decay chain.

9 if (1 <0 || 1 >= 1in. ()) return res;

10

11 db = in.at(1).daughters_begin ;

12 de = in.at(1).daughters_end;

13

14 if (db !=de) { // particle is unstable

15 for (id = db; id < de; id++) {

16 idaughter = ind[id];

17 std: :vector< > 1Y = (idaughter, in, ind) ;
18 res. (res. (), rr. (), rr.));

19 }
20 }
21 else { // particle is stable
22 res. (1) ;

23 return res ;

https://hep-fcc.github.io/fcc-tutorials/master/fast-sim-and-analysis/FCCAnalysesProblemsAndSolutions.html#navigation-through-the-history-of-the-mc-particles
https://hep-fcc.github.io/fcc-tutorials/master/fast-sim-and-analysis/FCCAnalysesProblemsAndSolutions.html#navigation-through-the-history-of-the-mc-particles

Associations

e One-to-one relationships between two collection types, e.g.:
= MCParticle & ReconstructedParticle
m SimTrackerHit & TrackerHit

o Relationships between Simulation and Reconstruction side

e Example analyzer: Association between RecoParticle and MCParticle (link):

Ooco~dJOoOuUuTk, WN -

: :VecOps: :RVec<int>

MC: :getRP2MC_index(const : :VecOps
const : :VecOps
const : :VecOps

: :VecOps: :RVec<int> result;
result.resize(reco.size(),-1.);
for (size_t i1=0; i<recind.size();i++) {
result[recind.at(1i)]=mcind.at(1); // recind.at(i) 1s

. :RVec<int>& recind,
. :RVec<int>& mcind,
: :RVec<edmdhep: :ReconstructedParticleData>& reco) {

the index of a reco

14

https://hep-fcc.github.io/fcc-tutorials/master/fast-sim-and-analysis/FCCAnalysesProblemsAndSolutions.html#association-between-recoparticles-and-montecarloparticles
https://hep-fcc.github.io/fcc-tutorials/master/fast-sim-and-analysis/FCCAnalysesProblemsAndSolutions.html#association-between-recoparticles-and-montecarloparticles

Documentation

Multiple sources of documentation

FCC Tutorials: https://hep-fcc.github.io/fcc-tutorials/

= Focused on providing a tutorial on a specific topic
Code reference: https://hep-fcc.github.io/FCCAnalyses/doc/latest/
= Provides details about implementation of individual analyzers

Manual pages:
= Info about commands directly in the terminal: man fccanalysis

FCCAnalyses website, FCCSW website

15

https://hep-fcc.github.io/fcc-tutorials
https://hep-fcc.github.io/FCCAnalyses/doc/latest
https://hep-fcc.github.io/FCCAnalyses/
https://hep-fcc.github.io/FCCSW/
https://hep-fcc.github.io/fcc-tutorials
https://hep-fcc.github.io/FCCAnalyses/doc/latest
https://hep-fcc.github.io/FCCAnalyses/
https://hep-fcc.github.io/FCCSW/

Conclusions

Primary focus of EDM4hep is in Reconstruction

Current strategy in FCCAnalyses is to slowly decay EDM4hep into more basic objects/structures
To resolve relationships might require working with indexes across multiple collections

= Remedy: EDM4hep RDataSource

EDM4hep 1.0 is coming soon

= All pre-generated samples will need to be reprocessed

16

https://github.com/HEP-FCC/FCCAnalyses/pull/309
https://github.com/HEP-FCC/FCCAnalyses/pull/309

Oooco~dNOOUTE WN -

Example analysis

he Higgs boson mass and o(ZH) from the recoil mass with leptonic Z decays (link)

#Mandatory: List of processes
processList = {
{ :0.005} ,#Run the full statistics in one output file named <outputDir>/p8_ee_Z7Z_ecm240.xoo0t
{ 0.5, :2}, #Run 50% of the statistics in two files named <outputDir>/p8_ee_WW_ecm24@/chunk<N>.r
- { 0.2, ; } #Run 20% of the statistics in one file named <outputDir>/p8_ee_ZH
}

#Mandatory: Production tag when running over EDM4Hep centrally produced events, this points to the yaml files for getting sample statist
prodTag =

#0ptional: output directory, default is local running directory

outputDir =

#Optional: analysisName, default is ""
#analysisName = "My Analysis”
#0ptional: ncpus, default is 4

#nCPUS = 8

#0ptional running on HTCondor, default is False

#runBatch = False

#0ptional batch queue name when running on HTCondor, default is workday

#batchQueue = "longlunch"

#0ptional computing account when running on HTCondor, default is group_u_FCC.local_gen
#compGroup = "group_u_FCC.local_gen"

#0ptional test file
testFile =

#Mandatory: RDFanalysis class where the use defines the operations on the TTree
class ():

https://hep-fcc.github.io/FCCeePhysicsPerformance/case-studies/higgs/mH-recoil/
https://hep-fcc.github.io/FCCeePhysicsPerformance/case-studies/higgs/mH-recoil/

