Steps Toward Including Endcap EM Calorimeter in Full ALLEGRO Simulation

> <u>E. Varnes</u>, J. Rutherfoord, R. Walker University of Arizona December 6, 2023

> > 1

Calorimetry and the Arizona Group

- By way of introduction, the Arizona group has extensive experience in LAr calorimetry
 - notably in the design and construction of the ATLAS forward calorimeter (Rutherfoord, Shupe)
 - we maintain a LAr cryostat for small-scale lab testing/test beams
 - expertise in mechanical and electrical engineering, including PCB design
- We would like to apply these resources to the design of a noble-liquid endcap EM calorimeter for the FCCee

General considerations

- The endcap EC dimensions are taken from the envelope that exists in the ALLEGRO simulation setup
 - midplane is taken to be at z = 348.5 cm
 - depth in z is set to 45 cm
- Consistent with the sketch presented by Martin Aleksa at the US FCC workshop (<u>link</u>):

3

Noble Liquid ECAL based

- Tentative absorber geometry motivated by
 - desire to have many thin absorber plates (for spatial and energy resolution)
 - desire to have readout solely from high-|z| face
 - desire for as much uniformity as possible
- Led to the following concept ("turbine geometry"):

• Inner radius portion with the full set of absorbers and electrodes (~240 of each):

- Some notable parameters:
 - angle of plates wrt face of the cylinder:

- Optimization studies indicate that θ should be as small as possible
 - theoretical minimum is $\tan^{-1} (\Delta z/2r_i) = 28.7^{\circ}$

- But there are practical problems with an angle too near that minimum
 - leads to tiny gap or even interference between plates at inner radius

Example for $\theta = 45^{\circ}$

- θ is set to 55° for the studies shown here
 - NB that all parameters (blade angle, absorber and gap thicknesses, etc) are subject to optimization

- This allows even gap spacing at the inner radius while keeping a relatively large number of plates
 - necessary for containing the EM shower

- Another consideration is the variation of the gap with radius
 - means that response is very different at the inner and outer radii (41 cm and 275 cm)
- To mitigate this, the detector can be subdivided into a set of nested cylinders:

Tradeoff between minimizing variation in gap width vs. minimizing transitions/dead areas

In this example, each cylinder has $r_o/r_i \approx 1.9$

Assessing Performance

- For initial tests of the viability of this concept, the geometry was created in ROOT, then exported as GDML for use in Geant4
- Use particle gun to fire mono-energetic electrons uniformly in η and ϕ , originating from the IP

showing my pp collider influence —

– energies were set to 1, 10, and 100 GeV

- Estimated response and resolution based on the standard deviation of the energy deposited in the noble liquid
 - so generally this is quite optimistic (no electronics noise or other effects considered)
- All of this was standalone, not integrated into the ALLEGRO simulation framework ¹⁰

Sampling Fraction and Depth

• NB that slightly different values for r_i , r_o , and Δz were used for these standalone tests

Energy resolution

- Spikes at transitions between cylinders likely due to non-uniformity in response as shower traverses the boundary
 - could be mitigated using detailed shower shape information

Resolution vs eta

Towards Integration in the FCC Framework

- We are at the point now where a more realistic simulation (including actual reconstruction, etc.) is needed
- Therefore a good moment to integrate the geometry concept into the FCC software framework

- Status: the geometry has now been ported to the dd4hep/ k4geo framework used for FCCee simulations (thanks to patient guidance from Brieuc)
 - in my k4geo fork at <u>https://github.com/varnes/k4geo</u>
 - <u>xml to set parameters</u>
 - <u>cpp file</u>
- As seen in JSROOT viewer, after running dd4hep2root:

- Some initial choices made:
 - ID bits/flags are defined as:
 - system: 4 bits, set to EndcapECal_id value
 - cryo: 1 bit, true for cryostat elements
 - type: 3 bits, 0 = active, 1 = passive, 2 = readout
 - subtype: 3 bits, unused
 - layer: 8 bits, represents segmentation in z
 - module: 14 bits, counts each active/passive/readout unit
 - theta: 16 bits, not explicitly used
 - phi, 10 bits, not explicitly used

LAr volume with one "layer" highlighted

Simulation

- Running GEANT4 via ddsim also seems to work
 - produces root file, with reasonable-looking energy deposits:

Summary and Next Steps

- Have taken initial steps towards incorporating a geometry concept for the endcap ECal into the FCC software framework
 - NB that we view this geometry concept mostly as a way to learn the ropes of the FCC software
 - i.e. we plan to play a major role in the endcap ECal regardless of the geometry that is eventually chosen
- Current status is that initial version of geometry is implemented, and appears to be recognized correctly by ddsim
- Next steps will be to define a readout segmentation and run reconstruction
 - I have a lot to learn about how to do this!