Neutrino mass matrix and LFV

Enrique Fernández-Martínez

HIDDE Hunting Invisibles: Dark sectors, Dark matter and Neutrinos Asymmetry Essential Asymmetries of Nature

U

Interaction Basis		Mass Basis
$ \nu_e angle$	U_{PMNS}	$ u_1 angle$ $\mathbf{m_1}$
$ u_{\mu} angle$ —		$ \nu_2\rangle$ m ₂
$ u_{ au} angle$		$ \nu_3\rangle$ m ₃
$ \nu_{\alpha}\rangle = U_{\alpha i}^* \nu_i\rangle$	with $\alpha = e, \mu, \tau$	<i>i</i> = 1, 2, 3
Atmospheric	Solar	Majorana Phases
$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} \\ 0 \\ -s_{13} e^{i\delta} \end{pmatrix}$	$ \begin{array}{ccc} 0 & s_{13} e^{-i\delta} \\ 1 & 0 \\ 0 & c_{13} \end{array} \right) \left(\begin{array}{ccc} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 0 & 0 \end{array}\right) $	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & e^{i\alpha_3/2} \end{pmatrix} $
$s_{ij} = \sin \theta_{ij} \langle \nu_\beta \nu_\alpha(L) \rangle$	$\left \right\rangle = \sum_{i} U_{\beta i} e^{i p_{i} L} U_{\alpha i}^{*}$	$\neq \delta_{\alpha\beta}$

Interaction Basis		Mass Basis
$ v_e\rangle$	U_{PMNS}	$ \nu_1 angle$ m ₁
$ u_{\mu} angle$		$ \nu_2\rangle$ m ₂
$ \nu_{ au} angle$		$ \nu_3\rangle$ m ₃
$ \nu_{\alpha}\rangle = U_{\alpha}^{*}$	$\langle v_i v_i \rangle$ with $\alpha = e, \mu, \tau$	<i>i</i> = 1, 2, 3
Atmospheric	Solar	Majorana Phases
$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} 0 \\ -s \\ -s \end{pmatrix}$	$ \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ c_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 0 & 0 \end{pmatrix} $	$ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & e^{i\alpha_3/2} \end{pmatrix} $
$s_{ij} = \sin \theta_{ij}$ P	$P_{\alpha\beta} = \sin^2 2\theta_{ij} \sin^2 \frac{\Delta m_{ij}^2 I}{AE}$	r

4*E*

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

What we already know (1σ)

SNO, Borexino KamLAND

"Solar sector" $\begin{cases} \Delta m_{21}^2 = 7.4^{+0.2}_{-0.2} \cdot 10^{-5} \text{eV}^2 \\ \sin^2 \theta_{12} = 0.303^{+0.012}_{-0.011} \end{cases}$

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

What we already know (1 σ)

SNO, Borexino KamLAND	"Solar sector"	$\begin{cases} \Delta m_{21}^2 = 7.4^{+0.2}_{-0.2} \cdot 10^{-5} \text{eV}^2\\ \sin^2 \theta_{12} = 0.303^{+0.012}_{-0.011} \end{cases}$
SK, T2K, IC MINOS, NOvA	"Atm. sector"	$\begin{cases} \left \Delta m_{31}^2 \right = 2.50^{+0.03}_{-0.03} \cdot 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.57^{+0.02}_{-0.02} \end{cases}$

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

What we already know (1σ)

SNO, Borexino KamLAND	"Solar sector"	$\begin{cases} \Delta m_{21}^2 = 7.4^{+0.2}_{-0.2} \cdot 10^{-5} \text{eV}^2\\ \sin^2 \theta_{12} = 0.303^{+0.012}_{-0.011} \end{cases}$
SK, T2K, IC MINOS, NOvA	"Atm. sector"	$\begin{cases} \left \Delta m_{31}^2 \right = 2.50^{+0.03}_{-0.03} \cdot 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.57^{+0.02}_{-0.02} \end{cases}$
Daya Bay RENO, T2K, NOv	A	$\sin^2 \theta_{13} = 0.0203 \pm 0.0006$

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

Evidence for ν mass and mixing from LFV in oscillation phenomenon in many experiments with great agreement

What we already know (1σ)

SNO, Borexino KamLAND	"Solar sector"	$\begin{cases} \Delta m_{21}^2 = 7.4^{+0.2}_{-0.2} \cdot 10^{-5} \text{eV}^2\\ \sin^2 \theta_{12} = 0.303^{+0.012}_{-0.011} \end{cases}$
SK, T2K, IC MINOS, NOvA	"Atm. sector"	$\begin{cases} \left \Delta m_{31}^2 \right = 2.50^{+0.03}_{-0.03} \cdot 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.57^{+0.02}_{-0.02} \end{cases}$
Daya Bay RENO, T2K, NOv	A	$\sin^2 \theta_{13} = 0.0203 \pm 0.0006$

What we still don't know

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁ ?

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁?

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁?

Mass hierarchy? Absolute mass scale?

Between NOvA (currently running) and JUNO (expected start late 2024) should clarify the situation in a few years

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁ ?

-	Datasets	$\Sigma m_{\nu} [\mathrm{eV}]$	From Cosmology
C=Planck D=DESI	CDS	$< 0.093 (2 \sigma)$	$^{-}$ IH ($\Sigma m_{v} > 0.1 \text{eV}$) is
	CDSO	$< 0.091 (2\sigma)$	on the dataset analized
		$< 0.071 (2\sigma)$	
S=SN O=Ch	CDSG	$< 0.049 (2\sigma)$	
A=ADD G=GRB	D CDSOA	$< 0.065 (2\sigma)$	
	CDSOG	$< 0.049 (2\sigma)$	
	CDSAG	$< 0.045 (2\sigma)$	D. Wang, O. Mena, E. Di
	CDSOAG	$< 0.043 (2\sigma)$	Valentino and S. Gariazzo 2405.03368

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁ ?

	Datasets	$\Sigma m_{\nu} [\mathrm{eV}]$	From Cosmology
C=Planck D=DESI	\mathbf{CDS}	$< 0.093 (2 \sigma)$	TH ($\Sigma m_{\nu} > 0.1 \text{eV}$) is
	CDSO	$< 0.091 (2 \sigma)$	on the dataset analized
	SI CDSA	$< 0.071 (2 \sigma)$	
S=SN O=Chr	CDSG	$< 0.049 (2 \sigma)$	Then again, even
A=ADD CI G=GRB CI CI	CDSOA	$< 0.065 (2 \sigma)$	NH ($\Sigma m_{\nu} > 0.05 \text{eV}$) is
	CDSOG	$< 0.049 (2 \sigma)$	distavoured
	CDSAG	$< 0.045 (2 \sigma)$	D. Wang, O. Mena, E. Di
	CDSOAG	$< 0.043 (2\sigma)$	Valentino and S. Gariazzo 2405.03368

What we still don't know

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁ ?

CP violation phase? δ ?

 $\sim 2\sigma$ tension between the two present measurements of δ

 $\sim 2\sigma$ tension between the two present measurements of δ

What we still don't know

Mass hierarchy? Absolute mass scale? $sign(\Delta m_{31}^2)$? m₁ ?

CP violation phase? δ ?

Majorana Nature and phases?

Majorana Nature and phases?

$$v \text{ mass from right-handed neutrinos}$$

$$m_{\nu} = \begin{pmatrix} 0 & m_D^t \\ m_D & M_N \end{pmatrix} \xrightarrow{} U^t \begin{pmatrix} 0 & m_D^t \\ m_D & M_N \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$
Seesaw

If $M_N \gg m_D$ then $M \approx M_N$ and $m \approx m_D^t M_N^{-1} m_D \rightarrow \text{lightness of } v$ small mixing $\Theta \approx m_D^{\dagger} M_N^{-1}$ v mass from right-handed neutrinos $m_{\nu} = \begin{pmatrix} 0 & m_D^t \\ m_D & M_N \end{pmatrix} \xrightarrow{} U^t \begin{pmatrix} 0 & m_D^t \\ m_D & M_N \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$ Seesaw

If $M_N \gg m_D$ then $M \approx M_N$ and $m \approx m_D^t M_N^{-1} m_D \rightarrow \text{lightness of } v$ small mixing $\Theta \approx m_D^{\dagger} M_N^{-1}$

$$v \text{ mass from right-handed neutrinos}$$

$$m_{\nu} = \begin{pmatrix} 0 & m_D^t \\ m_D & M_N \end{pmatrix} \xrightarrow{} U^t \begin{pmatrix} 0 & m_D^t \\ m_D & M_N \end{pmatrix} U = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$
Seesaw

If $M_N \gg m_D$ then $M \approx M_N$ and $m \approx m_D^t M_N^{-1} m_D \rightarrow \text{lightness of } v$ small mixing $\Theta \approx m_D^{\dagger} M_N^{-1}$

Or in EFT language integrating out the heavy neutrinos gives:

d=5 Weinberg 1979

d=6 A. Broncano, B. Gavela and E. Jenkins hep-ph/0210271

$$Y_{\upsilon}^{\dagger} M_{N}^{-2} Y_{\upsilon} (\overline{L_{L}} \widetilde{\phi}) \mathscr{O} \left(\widetilde{\phi}^{\dagger} L_{L} \right)$$
$$\left| \langle \phi \rangle = \frac{\upsilon}{\sqrt{2}} \right|$$
$$\Theta \Theta^{\dagger} \overline{\nu_{L}} \mathscr{O} \nu_{L}$$

$$U^{t}\begin{pmatrix} 0 & m_{D}^{t} \\ m_{D} & M_{N} \end{pmatrix}U \approx \begin{pmatrix} N^{t} & -\Theta^{*} \\ \Theta^{t} & X^{t} \end{pmatrix}\begin{pmatrix} 0 & m_{D}^{t} \\ m_{D} & M_{N} \end{pmatrix}\begin{pmatrix} N & \Theta \\ -\Theta^{\dagger} & X \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

The 3×3 submatrix *N* of active neutrinos will not be unitary

Effects in weak interactions...

$$U^{t}\begin{pmatrix} 0 & m_{D}^{t} \\ m_{D} & M_{N} \end{pmatrix}U \approx \begin{pmatrix} N^{t} & -\Theta^{*} \\ \Theta^{t} & X^{t} \end{pmatrix}\begin{pmatrix} 0 & m_{D}^{t} \\ m_{D} & M_{N} \end{pmatrix}\begin{pmatrix} N & \Theta \\ -\Theta^{\dagger} & X \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

The 3×3 submatrix *N* of active neutrinos will not be unitary

Effects in weak interactions...

 G_F from μ decay vs M_W measurents of $\sin \theta_W$ from LEP, Tevatron and LHC and β and Kdecays, LFU constraints...

$$U^{t}\begin{pmatrix} 0 & m_{D}^{t} \\ m_{D} & M_{N} \end{pmatrix}U \approx \begin{pmatrix} N^{t} & -\Theta^{*} \\ \Theta^{t} & X^{t} \end{pmatrix}\begin{pmatrix} 0 & m_{D}^{t} \\ m_{D} & M_{N} \end{pmatrix}\begin{pmatrix} N & \Theta \\ -\Theta^{\dagger} & X \end{pmatrix} = \begin{pmatrix} m & 0 \\ 0 & M \end{pmatrix}$$

The 3×3 submatrix *N* of active neutrinos will not be unitary

Effects in weak interactions...

 G_F from μ decay vs M_W measurents of $\sin \theta_W$ from LEP, Tevatron and LHC and β and Kdecays, LFU constraints... Also the invisible width of the Z since NC are also affected

And LFV processes such as $\mu \rightarrow e \gamma \text{ or } \tau \rightarrow e \gamma \text{ since the}$ GIM cancellation is lost

Looking for N_R : Non-Unitarity

Bounds from a global fit to flavour and Electroweak precision

95% CL	LFC	LFV	
$\eta_{ee} = \frac{1}{2} \sum_{k} \Theta_{ek} ^2$	$[0.081, 1.4] \cdot 10^{-3}$	-	$N = (\mathbb{I} - \eta)U$
$\eta_{\mu\mu}$	$1.4 \cdot 10^{-4}$	-	$\Theta \Theta^{\dagger}$ \dagger
$\eta_{ au au}$	$8.9\cdot10^{-4}$	-	$\eta = \Theta \approx m_D^+ M_N^{-1}$
${ m Tr}\left[\eta ight]$	$2.1 \cdot 10^{-3}$	-	M. Blennow, EFM,
$ \eta_{e\mu} $	$3.4 \cdot 10^{-4}$	$1.2\cdot 10^{-5}$	J. Hernandez-Garcia, J. Lopez-Pavon
$ \eta_{e au} $	$8.8\cdot 10^{-4}$	$8.1 \cdot 10^{-3}$	X. Marcano and
$ \eta_{\mu au} $	$1.8\cdot 10^{-4}$	$9.4 \cdot 10^{-3}$	D. Naredo-Tuero 2306.01040

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823...

Bounds from a global fit to flavour and Electroweak precision

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-ph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1605.08774, A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823...

Add heavy fermion triplets $\overrightarrow{\Sigma_R}$ with $Y_{\Sigma} \overline{L_L} \vec{\tau} \vec{\phi} \overline{\Sigma_R}$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

$$Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma} \left(\overline{L_{L}^{c}} \tilde{\phi}^{*} \right) \left(\tilde{\phi}^{\dagger} L_{L} \right)$$
$$\left| \langle \phi \rangle = \frac{v}{\sqrt{2}} \right|$$
$$m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}$$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma} \left(\overline{L_L} \vec{\tau} \vec{\phi} \right) \not D \left(\vec{\phi}^{\dagger} \vec{\tau} L_L \right)$$

Add heavy fermion triplets $\overrightarrow{\Sigma_R}$ with $Y_{\Sigma} \overline{L_L} \vec{\tau} \vec{\phi} \overline{\Sigma_R}$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

$$Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma} \left(\overline{L_{L}^{c}} \tilde{\phi}^{*} \right) \left(\tilde{\phi}^{\dagger} L_{L} \right)$$
$$\left| \langle \phi \rangle = \frac{v}{\sqrt{2}} \right|$$
$$m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}$$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma} \left(\overline{L_L} \vec{\tau} \vec{\phi} \right) \not D \left(\vec{\phi}^{\dagger} \vec{\tau} L_L \right)$$

Modifies 1 kinnetic terms

Add heavy fermion triplets $\overrightarrow{\Sigma_R}$ with $Y_{\Sigma} \overline{L_L} \vec{\tau} \vec{\phi} \Sigma_R$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

$$Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma} \left(\overline{L_{L}^{c}} \tilde{\phi}^{*} \right) \left(\tilde{\phi}^{\dagger} L_{L} \right)$$
$$\left| \langle \phi \rangle = \frac{v}{\sqrt{2}} \right|$$
$$m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{v_{L}^{c}} v_{L}$$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 $Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma} (\overline{L_L} \vec{\tau} \tilde{\phi}) \not D \left(\tilde{\phi}^{\dagger} \vec{\tau} L_L \right)$ Modifies lodifies 🖉

kinnetic terms

kinnetic terms

Add heavy fermion triplets $\overrightarrow{\Sigma_R}$ with $Y_{\Sigma} \overline{L_L} \vec{\tau} \vec{\phi} \overline{\Sigma_R}$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

$$Y_{\Sigma}^{t} M_{\Sigma}^{-1} Y_{\Sigma} \left(\overline{L_{L}^{c}} \tilde{\phi}^{*} \right) \left(\tilde{\phi}^{\dagger} L_{L} \right)$$
$$\left| \langle \phi \rangle = \frac{\nu}{\sqrt{2}} \right|$$
$$m_{\Sigma}^{t} M_{\Sigma}^{-1} m_{\Sigma} \overline{\nu_{L}^{c}} \nu_{L}$$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058 $Y_{\Sigma}^{\dagger} M_{\Sigma}^{-2} Y_{\Sigma} \left(\overline{L_L} \vec{\tau} \vec{\phi} \right) \not D \left(\vec{\phi}^{\dagger} \vec{\tau} L_L \right)$ Modifies v odifies 🖉 kinnetic terms kinnetic terms Modifies couplings to

the W
Bound on type III Seesaw

But very strong bounds on type III from FCNC at tree level

	1	$Z \to \mu e$	$ \eta_{\mu e} < 8.5 \cdot 10^{-4} \ [45]$
	l_{α}^{+}	$Z \to \tau e$	$ \eta_{\tau e} < 3.1 \cdot 10^{-3} \ [45]$
\sim	$\sqrt{l_{\beta}}$	$Z \to \tau \mu$	$ \eta_{\tau\mu} < 3.4 \cdot 10^{-3} \ [45]$
		$h \to \mu e$	$ \eta_{\mu e} < 0.54 \ [45]$
$\mu ightarrow e \; ({ m Ti})$	$ \eta_{\mu e} < 3.0 \cdot 10^{-7} \; [53]$	$h \to \tau e$	$ \eta_{\tau e} < 0.14 \; [45]$
$\mu \to eee$	$ \eta_{\mu e} < 8.7 \cdot 10^{-7} \ [45]$	$h \to \tau \mu$	$ \eta_{\tau\mu} < 0.20 \ [45]$
$\tau \to eee$	$ \eta_{\tau e} < 3.4 \cdot 10^{-4} \ [45]$	$\mu \to e \gamma$	$ \eta_{\mu e} < 1.1 \cdot 10^{-5} \ [45]$
$ au ightarrow \mu \mu \mu$	$ \eta_{\tau\mu} < 3.0 \cdot 10^{-4} \ [45]$	$\tau \to e \gamma$	$ \eta_{\tau e} < 7.2 \cdot 10^{-3} \ [45]$
$ au o e \mu \mu$	$ \eta_{ au e} < 3.0 \cdot 10^{-4} \; [45]$	$\tau \to \mu \gamma$	$ \eta_{\tau\mu} < 8.4 \cdot 10^{-3} \ [45]$
$ au o \mu ee$	$ig \eta_{ au\mu}ig < 2.5\cdot 10^{-4} \; [45]$	C. Biggio, EFM, Garcia, J. Lopez	M. Filaci J. Hernandez- z-Pavon 1911.11790

The type II Seesaw

Add heavy scalar triplet $\vec{\Delta}$ with $Y_{\Delta}\overline{L_L}\vec{\tau}\varepsilon L_L^c\vec{\Delta} + \mu_{\Delta}\phi^{\dagger}\vec{\tau}\vec{\phi}\vec{\Delta}$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

 $4Y_{\Delta}\mu_{\Delta}M_{\Delta}^{-2}\left(\overline{L_{L}^{c}}\tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger}L_{L}\right)$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$Y_{\Delta}Y_{\Delta}^{\dagger}M_{\Delta}^{-2}(\overline{L_L}\gamma_{\mu}L_L)(\overline{L_L}\gamma^{\mu}L_L)$$

See talk by Marco Ardu

The type II Seesaw

Add heavy scalar triplet $\vec{\Delta}$ with $Y_{\Delta}\overline{L_L}\vec{\tau}\varepsilon L_L^c\vec{\Delta} + \mu_{\Delta}\phi^{\dagger}\vec{\tau}\vec{\phi}\vec{\Delta}$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

 $4Y_{\Delta}\mu_{\Delta}M_{\Delta}^{-2}\left(\overline{L_{L}^{c}}\tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger}L_{L}\right)$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$Y_{\Delta}Y_{\Delta}^{\dagger}M_{\Delta}^{-2}(\overline{L_L}\gamma_{\mu}L_L)(\overline{L_L}\gamma^{\mu}L_L)$$

If μ_{Δ} is small L is approximately conserved and the LNV d=5 is suppressed but the LFV d=6 operator may be sizable

The type II Seesaw

Add heavy scalar triplet $\vec{\Delta}$ with $Y_{\Delta}\overline{L_L}\vec{\tau}\varepsilon L_L^c\vec{\Delta} + \mu_{\Delta}\phi^{\dagger}\vec{\tau}\vec{\phi}\vec{\Delta}$

Integrating out the heavy triplets gives:

d=5 Weinberg 1979

 $4Y_{\Delta}\mu_{\Delta}M_{\Delta}^{-2}\left(\overline{L_{L}^{c}}\tilde{\phi}^{*}\right)\left(\tilde{\phi}^{\dagger}L_{L}\right)$

d=6 A. Abada, C. Biggio, F. Bonnet, B. Gavela and T. Hambye 0707.4058

$$Y_{\Delta}Y_{\Delta}^{\dagger}M_{\Delta}^{-2}(\overline{L_L}\gamma_{\mu}L_L)(\overline{L_L}\gamma^{\mu}L_L)$$

If μ_{Δ} is small L is approximately conserved and the LNV d=5 is suppressed but the LFV d=6 operator may be sizable

Leading constraints from d=6 4-lepton LFV operators

See talk by Marco Ardu

$\left(\begin{array}{c} c_{e\mu L}^{eeLV} \end{array} \right)$		(6.2×10^{-6})	$\left(c_{e\mu L}^{eeRV} ight)$		(5.2×10^{-6})	$\left(c_{e\mu R}^{eeRS} ight)$		(3.1×10^{-6})	١
$c_{e\tau L}^{eeLV}$		2.4×10^{-3}	$c_{e\tau L}^{eeRV}$		$2.0 imes 10^{-3}$	$c_{e\tau R}^{eeRS}$		1.2×10^{-3}	
$c^{\mu\mu LV}_{\mu au L}$		2.1×10^{-3}	$c^{\mu\mu RV}_{\mu\tau L}$		$1.8 imes 10^{-3}$	$c^{\mu\mu RS}_{\mu\tau R}$		1.1×10^{-3}	
$c_{e\tau L}^{\mu\mu LV}$	<	$2.0 imes 10^{-3}$	$c_{e\tau L}^{\mu\mu RV}$		$2.0 imes 10^{-3}$	$c_{e\tau R}^{\mu\mu RS}$		1.4×10^{-3}	
$c^{eeLV}_{\mu au L}$		$2.0 imes 10^{-3}$	$c^{e\mu RV}_{\mu\tau L}$	<	$2.0 imes 10^{-3}$	$c^{e\mu RS}_{\mu\tau R}$	<	1.4×10^{-3}	
$c_{e\tau L}^{e\mu LV}$		$1.8 imes 10^{-3}$	$c^{eeRV}_{\mu\tau L}$		$2.0 imes 10^{-3}$	$c^{eeRS}_{\mu\tau R}$		1.4×10^{-3}	
$\begin{pmatrix} \mu eLV \\ C & I \end{pmatrix}$		(1.9×10^{-3})	$c_{e au L}^{\mu e R V}$		2.0×10^{-3}	$c_{e\tau R}^{\mu eRS}$		1.4×10^{-3}	
<i>\~μτL /</i>		```	$c_{e\tau L}^{e\mu RV}$		$1.5 imes 10^{-3}$	$c_{e\tau R}^{e\mu RS}$		9.0×10^{-4}	
Constra leptonic	ints op	on fully erators	$\left(c^{\mu e R V}_{\mu \tau L}\right)$		$\left(1.6 \times 10^{-3}\right)$	$\left(c_{\mu\tau R}^{\mu eRS}\right)$		$\left< 9.6 \times 10^{-4} \right>$	1

EFM, X. Marcano, **D. Naredo-Tuero** 2403.09772 bounds and correlations available at <u>https://github.com/dnaredo/cLFV_GlobalBounds</u>

	Leptonic	_	$\mathbf{up}-\mathbf{quarks}$	_	$\operatorname{down}-\operatorname{quarks}$
$\mathcal{O}_{lphaeta L}^{\gamma\delta LV}$	$(\bar{e}_{Llpha}\gamma^{\mu}e_{Leta})(\bar{e}_{L\gamma}\gamma_{\mu}e_{L\delta})$	${\cal O}^{uV}_{lphaeta L}$	$(\bar{u}\gamma_{\mu}u)(\bar{e}_{Llpha}\gamma^{\mu}e_{Leta})$	${\cal O}^{dV}_{lphaeta L}$	$(\bar{d}\gamma_{\mu}d)(\bar{e}_{Llpha}\gamma^{\mu}e_{Leta})$
$\mathcal{O}_{lphaeta R}^{\gamma\delta RV}$	$(\bar{e}_{Rlpha}\gamma^{\mu}e_{Reta})(\bar{e}_{R\gamma}\gamma_{\mu}e_{R\delta})$	$\mathcal{O}^{uA}_{lphaeta L}$	$(ar{u}\gamma_{\mu}\gamma_{5}u)(ar{e}_{Llpha}\gamma^{\mu}e_{Leta})$	${\cal O}^{dA}_{lphaeta L}$	$(ar{d}\gamma_{\mu}\gamma_{5}d)(ar{e}_{Llpha}\gamma^{\mu}e_{Leta})$
$\mathcal{O}_{lphaeta L}^{\gamma\delta RV}$	$(\bar{e}_{Llpha}\gamma^{\mu}e_{Leta})(\bar{e}_{R\gamma}\gamma_{\mu}e_{R\delta})$	${\cal O}^{uV}_{lphaeta R}$	$(\bar{u}\gamma_{\mu}u)(\bar{e}_{Rlpha}\gamma^{\mu}e_{Reta})$	${\cal O}^{dV}_{lphaeta R}$	$(\bar{d}\gamma_{\mu}d)(\bar{e}_{Rlpha}\gamma^{\mu}e_{Reta})$
$\mathcal{O}_{lphaeta R}^{\gamma\delta LV}$	$(\bar{e}_{Rlpha}\gamma^{\mu}e_{Reta})(\bar{e}_{L\gamma}\gamma_{\mu}e_{L\delta})$	$\mathcal{O}^{uA}_{lphaeta R}$	$(\bar{u}\gamma_{\mu}\gamma_{5}u)(\bar{e}_{Rlpha}\gamma^{\mu}e_{Reta})$	${\cal O}^{dA}_{lphaeta R}$	$(\bar{d}\gamma_{\mu}\gamma_{5}d)(\bar{e}_{Rlpha}\gamma^{\mu}e_{Reta})$
$\mathcal{O}_{lphaeta R}^{\gamma\delta RS}$	$(\bar{e}_{L\alpha}e_{R\beta})(\bar{e}_{L\gamma}e_{R\delta}) + \text{h.c.}$	$\mathcal{O}^{uS}_{lphaeta R}$	$(\bar{u}u)(\bar{e}_{L\alpha}e_{R\beta}) + \text{h.c.}$	${\cal O}^{dS}_{lphaeta R}$	$(\bar{d}d)(\bar{e}_{L\alpha}e_{R\beta}) + \text{h.c.}$
	Dipole	$\mathcal{O}^{uP}_{lphaeta R}$	$(\bar{u}\gamma_5 u)(\bar{e}_{L\alpha}e_{R\beta}) + \text{h.c.}$	${\cal O}^{dP}_{lphaeta R}$	$(\bar{d}\gamma_5 d)(\bar{e}_{L\alpha}e_{R\beta}) + \text{h.c.}$
${\cal O}^{e\gamma}_{lphaeta}$	$(\bar{e}_{L\alpha}\sigma^{\mu\nu}e_{R\beta})F_{\mu\nu}$ + h.c.	$\mathcal{O}^{uT}_{lphaeta R}$	$(\bar{u}\sigma_{\mu\nu}u)(\bar{e}_{L\alpha}\sigma^{\mu\nu}e_{R\beta}) + h.c.$	${\cal O}^{dT}_{lphaeta R}$	$(\bar{d}\sigma_{\mu\nu}d)(\bar{e}_{L\alpha}\sigma^{\mu\nu}e_{R\beta}) + \text{h.c.}$

Very many operators in LEFT that would contribute

Can we constrain them all?

Are there flat directions?

EFM, X. Marcano, **D. Naredo-Tuero** 2403.09772 bounds and correlations available at <u>https://github.com/dnaredo/cLFV_GlobalBounds</u>

For fully leptonic operators and dipoles there are no flat directions!

Coherent contributions between different Lorentz structures suppressed by chirality flips \rightarrow no cancellations

Global constraints = assuming one operator at a time

EFM, X. Marcano, **D. Naredo-Tuero** 2403.09772 bounds and correlations available at <u>https://github.com/dnaredo/cLFV_GlobalBounds</u>

For 4-fermion semileptonic operators many flat directions are present and prevent to set fully global constraints

2403.09772

available at

All in all there are 4 flat directions in the τ sectors

 $\tau \rightarrow e/\mu KK$ help with these but large uncertainties

EFM, X. Marcano, **D. Naredo-Tuero** 2403.09772 bounds and correlations available at

The directions probed by coherent µ-e conversion are almost parallel bounds are lost when nuclear uncertainties are accounted for S. Davidson, Y. Kuno, and M. Yamanaka 1810.01884

EFM, X. Marcano, **D. Naredo-Tuero** 2403.09772 bounds and correlations available at

Conclusions

- Neutrino oscillations are our first observation of LFV and require neutrino masses and BSM physics which generally predicts cLFV
- Our understanding of the neutrino oscillation parameters has entered the precision era, but some key properties remain to be determined
- In a global EFT perspective searching for charged LFV, constraints on leptonic operators are solid in a global fit
- Semileptonic opetarors suffer from flat directions and additional information would be useful
- $\mu \rightarrow e$ conversion can provide up to 4 independent constraints for SD and 4 for SI, regardless of number of nuclei measured and how precise nuclear uncertainties are. Meson decays still useful!

SK Atmospherics and mass hierarchy

SK coll. 2311.05105

The Golden channel in matter

$$P(\overline{v}_{e}^{n} \rightarrow \overline{v}_{\mu}) = s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{atm}}{\widetilde{B}_{\mp}}\right)^{2} \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right)^{2} \quad \text{``atmospheric''} \\ + c_{23}^{2} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{sol}}{A}\right)^{2} \sin^{2}\left(\frac{AL}{2}\right) \quad \text{``solar''} \\ \text{``interference''} + \tilde{J} \quad \frac{\Delta_{sol}}{A} \quad \frac{\Delta_{atm}}{\widetilde{B}_{\mp}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right) \cos\left(\pm\delta - \frac{\Delta_{atm}L}{2}\right) \\ \text{Expanded in} \end{cases}$$

 $\sin 2\theta_{13} \sim 0.3$

where

$$\widetilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \qquad \Delta_{atm} = \frac{\Delta m_{23}^2}{2E} \qquad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$$
$$A = \sqrt{2}G_F n_e \qquad \widetilde{B}_{\mp} = |A \mp \Delta_{atm}| \qquad \text{A. Cervera et al. hep-ph/0002108}$$

cLFV obs.	Present uppe	r bounds $(90\% \mathrm{CL})$
$BR(\mu \to e\gamma)$	3.1×10^{-13}	MEG II (2023)
$\mathrm{BR}(\mu \to eee)$	1.0×10^{-12}	SINDRUM (1988)
$\operatorname{CR}(\mu \to e, \mathrm{S})$	7.0×10^{-11}	Badertscher $et \ al. \ (1982)$
$CR(\mu \rightarrow e, Ti)$	4.3×10^{-12}	SINDRUM II (1993)
$\mathrm{CR}(\mu \to e, \mathrm{Pb})$	4.6×10^{-11}	SINDRUM II (1996)
$\operatorname{CR}(\mu \to e, \operatorname{Au})$	7.0×10^{-13}	SINDRUM II (2006)
$\mathrm{BR}(\pi^0 \to \mu^- e^+)$	3.2×10^{-10}	NA62 (2021)
${\rm BR}(\pi^0 \to \mu^+ e^-)$	3.8×10^{-10}	E865~(2000)
${\rm BR}(\pi^0 \to \mu e)$	3.6×10^{-10}	KTeV (2007)
$\mathrm{BR}(\eta \to \mu e)$	6.0×10^{-6}	Saturne SPES2 (1996)
$\mathrm{BR}(\eta' \to \mu e)$	4.7×10^{-4}	CLEO (2000)
$\mathrm{BR}(\phi \to \mu e)$	2.0×10^{-6}	SND (2009)

Very many observables constraining $\mu - e$ transitions

cLFV obs.	Present upper bou	inds $(90\% \text{ CL})$
${\rm BR}(\tau \to e \gamma)$	$3.3 imes 10^{-8}$	BaBar (2010)
$\mathrm{BR}(\tau \to e e \bar{e})$	$2.7 imes 10^{-8}$	Belle (2010)
${\rm BR}(\tau \to e \mu \bar{\mu})$	$2.7 imes 10^{-8}$	Belle (2010)
$\mathrm{BR}(\tau \to e\pi)$	$8.0 imes 10^{-8}$	Belle (2007)
${\rm BR}(\tau \to e\eta)$	9.2×10^{-8}	Belle (2007)
$\mathrm{BR}(\tau \to e \eta')$	1.6×10^{-7}	Belle (2007)
$\mathrm{BR}(\tau \to e\pi\pi)$	$2.3 imes 10^{-8}$	Belle (2012)
$\mathrm{BR}(\tau \to e\omega)$	2.4×10^{-8}	Belle (2023)
$\mathrm{BR}(\tau \to e\phi)$	2.0×10^{-8}	Belle (2023)

Very many observables constraining $\tau - e$ transitions

Present upper bounds	m s~(90%CL)
4.2×10^{-8}	Belle (2021)
2.1×10^{-8}	Belle (2010)
1.8×10^{-8}	Belle (2010)
$1.1 imes 10^{-7}$	BaBar (2006)
$6.5 imes 10^{-8}$	Belle (2007)
$1.3 imes 10^{-7}$	Belle (2007)
2.1×10^{-8}	Belle (2012)
$3.9 imes 10^{-8}$	Belle (2023)
$2.3 imes 10^{-8}$	Belle (2023)
	Present upper bounds 4.2×10^{-8} 2.1×10^{-8} 1.8×10^{-8} 1.1×10^{-7} 6.5×10^{-8} 1.3×10^{-7} 2.1×10^{-8} 3.9×10^{-8} 2.3×10^{-8}

Very many observables constraining $\tau - \mu$ transitions

A lower seesaw scale

But a very high M_N leads to the Higgs hierarchy problem

Lightness of v masses could also come naturally from an approximate symmetry (B-L)

A lower seesaw scale

But a very high M_N leads to the Higgs hierarchy problem

Lightness of ν masses could also come naturally from an approximate symmetry (B-L)

$$\begin{split} m_D \overline{N}_R \nu_L + M_N \ \overline{N}_R N_L \\ \begin{pmatrix} 0 & m_D^t & 0 \\ m_D & 0 & M_N \\ 0 & M_N & 0 \end{pmatrix} & \text{G. C. Branco, W. Grimus,} \\ & \text{and L. Lavoura 1988} \\ & \text{J. Kersten and} \\ & \text{A. Y. Smirnov 0705.3221} \end{split}$$

Low $M \approx M_N$ and large $\Theta \approx m_D^{\dagger} M_N^{-1}$ even if vanishing $m_{\nu} = 0$

A lower seesaw scale

But a very high M_N leads to the Higgs hierarchy problem

Lightness of ν masses could also come naturally from an approximate symmetry (B-L)

$$\begin{split} m_D \overline{N}_R \nu_L + M_N \ \overline{N}_R N_L + \mu \overline{N}_L^c \ N_L \\ \begin{pmatrix} 0 & m_D^t & 0 \\ m_D & 0 & M_N \\ 0 & M_N & \mu \end{pmatrix} & \text{``inverse Seesaw''} \\ \text{R. Mohapatra and J. Valle 1986} \end{split}$$

Low
$$M \approx M_N \pm \frac{\mu}{2}$$
 and large $\Theta \approx m_D^{\dagger} M_N^{-1}$ even if small $m_\nu \approx \mu \frac{m_D^2}{M_N^2}$

Non-unitarity and *M*_W from CDF

M. Blennow, P. Coloma, EFM, M-González-Lopez Phys.Rev.D 106 (2022) 7

Non-unitarity in type I vs type III Seesaw

Non-unitarity in type I + type III Seesaw

If contributions from both Type I and III are present the nonunitary contribution is no longer definite

With extra freedom is a posible solution to the Cabibbo anomaly A. M. Coutinho, A. Crivellin, and C. A. Manzari 1912.08823

And LFV becomes independent of LFC constraints

GUV	LFC Bound			LFV]	Bound
GUV	$68\% { m CL}$	$95\% { m CL}$		$68\% { m CL}$	$95\% \mathrm{CL}$
η_{ee}	$[0.56, 1.29] \cdot 10^{-3}$	$[0.20, 1.65] \cdot 10^{-3}$	$ \eta_{e\mu} $	$5.0 \cdot 10^{-6}$	$7.2 \cdot 10^{-6}$
$\eta_{\mu\mu}$	$[-8.2, -3.3] \cdot 10^{-4}$	$[-1.1, -0.088] \cdot 10^{-3}$	$ \eta_{e au} $	$3.4 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$
$\eta_{\tau\tau}$	$[-2.2, -0.38] \cdot 10^{-3}$	$[-3.1, 0.56] \cdot 10^{-3}$	$ \eta_{\mu au} $	$4.0 \cdot 10^{-3}$	$5.6 \cdot 10^{-3}$

M. Blennow, EFM, J. Hernandez-Garcia, J. Lopez-Pavon X. Marcano and D. Naredo-Tuero 2306.01040

Bound on type III Seesaw

But very strong bounds on type III from FCNC at tree level

	1	$Z \to \mu e$	$ \eta_{\mu e} < 8.5 \cdot 10^{-4} \ [45]$
	l_{α}^{+}	$Z \to \tau e$	$ \eta_{\tau e} < 3.1 \cdot 10^{-3} \ [45]$
\sim	$\sqrt{l_{\beta}}$	$Z \to \tau \mu$	$ \eta_{\tau\mu} < 3.4 \cdot 10^{-3} \ [45]$
		$h \to \mu e$	$ \eta_{\mu e} < 0.54 \ [45]$
$\mu ightarrow e \; ({ m Ti})$	$ \eta_{\mu e} < 3.0 \cdot 10^{-7} \; [53]$	$h \to \tau e$	$ \eta_{\tau e} < 0.14 \; [45]$
$\mu \to eee$	$ \eta_{\mu e} < 8.7 \cdot 10^{-7} \ [45]$	$h \to \tau \mu$	$ \eta_{\tau\mu} < 0.20 \ [45]$
$\tau \to eee$	$ \eta_{\tau e} < 3.4 \cdot 10^{-4} \ [45]$	$\mu \to e \gamma$	$ \eta_{\mu e} < 1.1 \cdot 10^{-5} \ [45]$
$ au ightarrow \mu \mu \mu$	$ \eta_{\tau\mu} < 3.0 \cdot 10^{-4} \ [45]$	$\tau \to e \gamma$	$ \eta_{\tau e} < 7.2 \cdot 10^{-3} \ [45]$
$ au o e \mu \mu$	$ \eta_{ au e} < 3.0 \cdot 10^{-4} \; [45]$	$\tau \to \mu \gamma$	$ \eta_{\tau\mu} < 8.4 \cdot 10^{-3} \ [45]$
$ au o \mu ee$	$ig \eta_{ au\mu}ig < 2.5\cdot 10^{-4} \; [45]$	C. Biggio, EFM, Garcia, J. Lopez	M. Filaci J. Hernandez- z-Pavon 1911.11790

Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos OK for all processes except maybe the loop LFV

Cancellations of these diagrams explored in: D.V. Forero, S. Morisi, M. Tortola, J.W.F. Valle 1107.6009

$$\Gamma \propto \sum_{i} \Theta_{\mu i} \Theta_{e \mathrm{i}}^{\dagger} f \left(\frac{M_{i}^{2}}{M_{W}^{2}} \right)$$

Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos OK for all processes except maybe the loop LFV

Cancellations of these diagrams explored in: D.V. Forero, S. Morisi, M. Tortola, J.W.F. Valle 1107.6009

$$\Gamma \propto \sum_{i} \Theta_{\mu i} \Theta_{e \mathrm{i}}^{\dagger} f\left(\frac{M_{i}^{2}}{M_{W}^{2}}\right) = 2\eta_{e \mu} f(\infty) + \sum_{i} \Theta_{\mu i} \Theta_{e \mathrm{i}}^{\dagger} \left(f\left(\frac{M_{i}^{2}}{M_{W}^{2}}\right) - f(\infty)\right)$$

Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos OK for all processes except maybe the loop LFV

This work was supported by: PID2019-108892RB-100 PID2022-137127NB-100 CEX2020-001007-S 860881-HiDDeN 101086085-ASYMMETRY

