The Higgs Hierarchy Problem:
Should we care about it?
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Coarse-graining

The Wilsonian Paradigm could be [
(or have been?) the answer:

Symmetries&Selection Rules, and (generalised)

dimensional analysis, are universally valid ‘%{ %.,
rules also beyond practical QF T \ R \ 4 p

We don’t know why the corner of Nature tested so far 1s
described by few, low-dimension local interactions
[nor of course why the SM particles/fields/parameters]
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Assume UV theory engineers light SM particle content.
Heavy BSM particles start at the Ay, (SM cutofl) scale.

If numerical coetficients are of order one, we say that UV theory 1s
generic: no special request to String model-builders!
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Wilson picture ¢¢« sum of local operators made of SM fields 9

Asm T # L = and compatible with UV symmetries
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d=4 .
L9 - describes all what we see (almost)

... and what we don’t see

(Fproton/mproton)exp. < 10_64 !! H (FPTOtOH/mpI‘OtOH)(d:4) =0
Accidental Baryon num. symm.

BR(pt — €7)exp < 1071211 =P BR(p — e7)(a=4) =0
Accidental Lepton family symm. 4
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L9 - describes all what we see (almost)
... and what we don’t see

£(9=5) « can describe what we see small
right v mass size 1f Aqpp ~ 10*GeV ~Mayr!!

£9=6) . ot yet seen. Agy > 101°GeV from proton decay.
If Wilson picture 1s right, Aqy; >> TeV explains observations
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Beyond dimensional analysis:

» Count powers of UV coupling g.
[the EFT from generic UV does not have all ¢’s ~1!]

 Symmetries of UV, and their breaking by Spurions

[make UV less generic, but in controlled manner]
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Beyond dimensional analysis:

» Count powers of UV coupling g.
[the EFT from generic UV does not have all ¢’s ~1!]

 Symmetries of UV, and their breaking by Spurions

[make UV less generic, but in controlled manner]

Plenty of small SM parameters are “understood” 1n this way.
E.g., flavour pattern from UV symmetries/spurions at super-high Agy, 20
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Implications of the Wilsonian picture:

* Neutrinos are, obviously, Majorana particles

* Proton will decay, though 1s unclear when

* Flavour pattern explanation will emerge at high energy
» Dark Matter? Whatever, but Minimal DM sounds great
* No BSM particles at conceivably accessible energy
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Implications of the Wilsonian picture:

* Neutrinos are, obviously, Majorana particles

* Proton will decay, though 1s unclear when

* Flavour pattern explanation will emerge at high energy
» Dark Matter? Whatever, but Minimal DM sounds great
* No BSM particles at conceivably accessible energy

But, we forgot one operator. Using again dim. analysis:

Lrmass = ANy L1972 = A2 HTH
m2
Instead: L H-mass = THHTH

The Naturalness Problem:
Why my < Agp?

23



Naturalness Problem 1n practice

UV explanation of m;; (and Higgs) must enable to predict m;;,.

IR (SM) Contribution m%[ —

o0 e e
dm%{ UV (BSM) Contribution
/odE aE \EPPT) | Gnsumi =cA3y,

----- o ke
T %E(...H/ aE(. )
5SMmH — 8—2ASM 0 SAsm
700

(NOT a quadratic
divergence calculation!!)
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Naturalness Problem 1n practice

UV explanation of m;; (and Higgs) must enable to predict m;;,.

IR (SM) Contribution m%[ —

o0 e e
dm%{ UV (BSM) Contribution
/odE aE \EPPT) | Gnsumi =cA3y,

----- o ke
TN %E(...H/ aE(. )
5SMmH — 8—2ASM 0 <ASM
700

a4

(NOT a quadratic 2 2
divergence calculation!!) =0 SM T gy —+ 5]381\/[771 H

Since the result must be (125 GeV)?, the two terms are almost
equal and opposite and cancel, by an amount

A>5m%{2<125(}e\/>2< ASM )2

m%[ mg 500 GeV
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Naturalness Problem 1n practice

UV explanation of m;; (and Higgs) must enable to predict m;;,.
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(NOT a quadratic 2 2
divergence calculation!!) =0 SM T gy —+ 5]381\/[771 H

Since the result must be (125 GeV)?, the two terms are almost
equal and opposite and cancel, by an amount

A > 5m%{ N 125 GeV ° ASM :
— m3 My 500 GeV

My
Fine-tuning: quantifies the “degree of Un-Naturalness”
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Naturalness Problem implications

Three possibilities: E
Option #1: Mo
* Wilson paradigm 1s right. Meor
* ASM ~ TeV. TABSM

 “Natural” BSM from Agy, to Agqy > TeV.
Duly engineered BSM to preserve Wilsonian SM successes

Asm
EW
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Naturalness Problem implications

Three possibilities:
Option #1:
* Wilson paradigm 1s right.
« Agp ~ TeV.

 “Natural” BSM from Agy, to Agqy > TeV.
Duly engineered BSM to preserve Wilsonian SM successes

v

Guidance for TeV and higher energy exploration:

e Useful BSM 1s Guidance, not “Motivation”!
 “Natural” BSM targets C general direct or EFT exploration.

e Strengthen Un-Naturalness discovery by pushing fine-tuning bound up.

Keep doing that until there 1s more energy/precision available.
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Naturalness Problem implications

Three possibilities:
Option #1:
» Wilson paradigm 1s right.
e Agyp ~ TeV.

 “Natural” BSM from Agy to Aggy > TeV.
Duly engineered BSM to preserve Wilsonian SM successes

Option #2:

» Wilson paradigm 1s right.
« No microscopic, but “environmental” m,; explanation.

* Heavy or light BSM as needed in order to engineer
anthropic/dynamical/statistical m,; explanation.
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Naturalness Problem implications

Three possibilities:
Option #1:
* Wilson paradigm 1s right.
« Agp ~ TeV.

 “Natural” BSM from Agy, to Agqy > TeV.
Duly engineered BSM to preserve Wilsonian SM successes

Option #2:

* Wilson paradigm 1s right.
« No microscopic, but “environmental” m,; explanation.

* Heavy or light BSM as needed in order to engineer
anthropic/dynamical/statistical m,; explanation.

Can this be the guidance to infer the underlying theory?

* Anthropic reason why we exist on Earth’s surface rather than anywhere else
in Galaxy 1s “clear”, based on Chemistry/Biology/Astronomy.
» Still, we don't know how likely 1s that we exist (nor we know about aliens)
* Would have we learned Chemistry by studying this “fine-tuning” problem?
* Naturalness might not be the “right” problem by which we will advance 30



Naturalness Problem implications

Three possibilities:
Option #1:
* Wilson paradigm 1s right.
« Agp ~ TeV.

 “Natural” BSM from Agy, to Agqy > TeV.
Duly engineered BSM to preserve Wilsonian SM successes

Option #2:

* Wilson paradigm 1s right.
« No microscopic, but “environmental” m,; explanation.

* Heavy or light BSM as needed in order to engineer
anthropic/dynamical/statistical m,; explanation.

Option #3:

* Wilson paradigm is wrong.

 Radically new principles or principles’ implementation.
Concrete 1deas missing.

* Most groundbreaking and hence interesting option.
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Naturalness Problem implications

A non-possibility:

We don’t understand m; (and the c.c.), but all the rest “is fine”.

E A / 'Strings,
Mp o GUT,
Mor """ Implications of the Wilsonian picture:
* Neutrinos are, obviously, Majorana particles
A e Proton will decay, though 1s unclear when
* Flavour pattern explanation will emerge at high energy
« Dark Matter? Whatever, but Minimal DM sounds great
W * No BSM particles at conceivably accessible energy
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Naturalness Problem implications

A non-possibility:
We don’t understand m; (and the c.c.), but all the rest “is fine”.
No! We cannot cherry-pick. If give up, give up everything!

e Proton w




The Higgs physics case
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The Higgs physics case

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT
implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories
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The Higgs physics case

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT
implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories

Higgs 1s not a superconductor
There 1s no Higgs “medium”™

Spin-one relativistic particles and their high-energy
description are as unique of hep as it sounds
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The Higgs physics case
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One more direct experimental confirmation of the Practical QFT
implementation of QM+SR principles (and indirectly of the principles).
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A special m.g.t.: perturbatively extends to high, untested, energies

37



The Higgs physics case

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT
implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories
A special m.g.t.: perturbatively extends to high, untested, energies

Testing new SM predictions 1s a prime target
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The Higgs physics case

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT
implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories
A special m.g.t.: perturbatively extends to high, untested, energies

Could be the first elementary scalar.
Disproves Wilsonian explanation of QFT emergent as EFT.

We must check!!
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A special m.g.t.: perturbatively extends to high, untested, energies

Could be the first elementary scalar.
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Higgs Physics questions for present and future colliders:

Is it the Standard Model Higgs Particle?
e Single-Higgs couplings
e Trilinear Higgs coupling

What is it made of?
e Composite Higgs
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The Higgs physics case

The Higgs is revolutionary!

One more direct experimental confirmation of the Practical QFT
implementation of QM+SR principles (and indirectly of the principles).

The first manifestation of a new class of theories: massive gauge theories
A special m.g.t.: perturbatively extends to high, untested, energies

Could be the first elementary scalar.
Disproves Wilsonian explanation of QFT emergent as EFT.

Higgs Physics questions for present and future colliders:

Is it the Standard Model Higgs Particle?
e Single-Higgs couplings

e Trilinear Higgs coupling
What is it made of?

e Composite Higgs

Is it the Standard Model Higgs Theory?

e High-energy EW (with Higgs) Physics
42



Number of events/(5 GeV)?
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High-Energy EW-+Higgs
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Most direct theory implications are at high En.

The role of the Higgs as part of the microscopic description
of the EW force must be verified by high energy experiments
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A SM physics case for future (muon!) colliders

The muon collider will probe a new regime of EW (+H) force:
E > my

Plenty of cool things will happen:
Electroweak Restoration. The SU(2) X U(1) group emerging, finally!

Electroweak Radiation 1n nearly massless broken gauge theory.
Never observed, never computed (and we don’t know how!)

The partonic content of the muon: EW bosons, neutrinos, gluons, tops, ...
Copious scattering of 5 TeV neutrinos!

The particle content of partons: ¢.g., find Higgs 1n tops, or in W’s, etc
Neutrino jets will be observed, and many more cool things

e — e, u,t,b, ...
gl — _—~e,u,t,b, ...
Wz T W w
AV v’f".‘J"'\‘"J’ - - ---“\-__ u
v W, Z ~._ e,v,t,b Vv
“;- “d y 2 '\'V'r‘-v."\'.v.'f\'.u 7/’ W, Z
ht,
'\ ~S ~ VW, Z ~
. ) N
! \\ 3 N~ h
7 e, U, t,b
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Conclusions

Obviously we care about Naturalness

e The fundamental downside of the Wilson’s “QFT=EFT”’ equation.
e LHC disproved solutions, hence established the Problem!!
e No reason for the community to forget about Naturalness as 1s happening.
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Conclusions

Obviously we care about Naturalness

e The fundamental downside of the Wilson’s “QFT=EFT”’ equation.
e LHC disproved solutions, hence established the Problem!!
e No reason for the community to forget about Naturalness as 1s happening.

Should we use it as guidance?

* Yes: useful organising principle for high-energy exploration.

e But, 1t might not be the right one.
Dream should be i1dentify novel problems of comparable depth.

Higgs physics
e Too often reduced to a Naturalness search
e Instead, 1s the exploration of a new theory and a new regime of EW interactions
e Standard Model Higgs + EW physics 1s exciting!

48



Conclusions

Thank You !
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Backup
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Theory Challenges

EW theory 1s weakly coupled, but observables are not IR safe

E. > m
Large muon cm W Small IR
collider energy cutoff scale

Scale separation entails enhancement of Radiation effect.

Like QCD (£ > Agcp) and QED (£ > m, = 0), but:

EW symmetry 1s broken: Practical need of computing
EW color is observable (W # 7). g W Radiation eftects
KLN Theorem non-applicable. Enhanced by log® E?/ méw

(inclusive observables not safe)

EW theory 18 Weakly-Coupled First-Principle predictions
The IR cutoff 1s physical =% must be possible

For arbitrary multiplicity final state
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Theory Challenges

EW theory 1s weakly coupled, but observables are not IR safe

Large muon

collider energy

Scale separation entails enhancement of Radiation effect.

Quantitatively, resummation 1s needed.

f Exclusive X-S\

Two hard bodies with
definite EW color.

K

Qeto on EW bosons. J

E.., > my

Two hard bodies of
definite EW color.

QW bosons allowed.

f Semi-Inclusive X-S )

e R

Small IR

cutoff scale

10 TeV MuC
exp [— g?/167*log*(E2 /m?) X Casimir] ~ exp[—1]

_/

Process | N (Ex) | N (S-I) = charged
ete” 6794 9088
eve — 2305 bb 4573 6273
pt T | 206402 | 254388 tt 9771 | 11891
i — 93010 bt — 5713
HrT | 6794 9088 Zoh 680 858
TV, — 2305 WorWy | 1200 1456
jj (Nt) | 19205 | 25725 | | WiWg | 2775 5027
jj (Ch) — 5653 W*h — 506
cé 9656 | 12775 Wi Zo — 399
cj — 5653 Wi Zp - 2345
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Theory Challenges

Benchmark predictions we must learn how to make:

e Direct 2—2 annihilation:

need X-S calculations and modelling of radiation (showering)

e EW-scale VBS: single Higgs production:

same scale of radiation emission as of scattering

53



A tale from the 90°s

" : Strmgs,
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EW dimensional analysis for coefficients

<

Beyond dimensional analysis:

» Count powers of UV coupling g.
[the EFT from generic UV does not have all ¢’s ~1!]

2
Simplest (Fermi) EFT: (] o~ _ 9w
4\/§m%‘/
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