Flavoured Majorana Dark Matter: From Freeze-Out to the LHC

Monika Blanke

Collaborative Research Center TRR 257

Particle Physics Phenomenology after the Higgs Discovery

The Flavour Path to New Physics Zurich – June 7, 2024

Two major puzzles of matter

Flavour puzzle

- Why does visible matter come in three generations?
- Why are their masses so hierarchical?
- Why is flavour violation so small?

Dark matter puzzle

- What is the dark matter (DM) of the universe made of?
- How was it created?
- How does it couple to ordinary matter?

potential link: flavoured dark matter

What is flavoured dark matter?

© Bing 2024

Assumptions

- dark matter comes in three generations
- dark flavour triplet couples to SM flavour triplet via new mediator field
- $\bullet\,$ new flavour-violating coupling matrix λ

Simplified models as tools to approach big puzzles

Fundamental UV-complete theory

- theoretical description up to high energy scales, based on fundamental symmetries
- addresses fundamental puzzles
- phenomenologically challenging: non-trivial connection to observables

Simplified models

- contain minimal set of relevant particles and interactions
- useful tool for efficient phenomenological studies
- constraints on classes of UV-complete theories

The flavoured DM model space

Model-building choices

- the nature of DM
 - scalar or fermion
 - real or complex representation
 - ➤ 4 options
- the SM fermion portal
 - quarks or leptons
 - left- or right-handed...
 - ≻ 5 options
- the flavour structure
 - Minimal Flavour Violation (MFV) or beyond

In this talk

- Majorana fermion flavoured DM coupled to right-handed up-type quarks
- Dark Minimal Flavour Violation (DMFV) Agrawal, MB, GEMMLER (2014)
 - dark flavour symmetry O(3)
 - $\bullet\,$ broken only by new coupling matrix λ
 - ➤ minimal step beyond MFV

talk based on:

ACAROĞLU, MB (2021) ACAROĞLU, MB, HEISIG, KRÄMER, RATHMANN (2023) illustrations: HEISIG @ MORIONDEW 2024

The model

Model basics

The model

Acaroğlu, MB
$$(2021)$$

$$\mathcal{L}_{\mathsf{dark}} = \frac{1}{2} \left(i \bar{\chi} \partial \chi - M_{\chi} \bar{\chi} \chi \right) - \left(\lambda_{ij} \bar{u}_{Ri} \chi_{j} \phi + \mathsf{h.c.} \right) \\ + \left(D_{\mu} \phi \right)^{\dagger} \left(D^{\mu} \phi \right) - m_{\phi}^{2} \phi^{\dagger} \phi - V(\phi, H)$$

- Majorana fermion χ : gauge singlet, triplet under new approx. flavour symmetry $O(3)_{\chi}$
- complex scalar ϕ : colour & hypercharge, couples DM to right-handed up-type quarks
- flavour-violating coupling matrix λ with 15 parameters

 $\lambda = U D O d$

U: unitary, O: orthogonal, d: Majorana phases, $D = \text{diag}(D_1, D_2, D_3)$ diagonal

• \mathbb{Z}_2 symmetry: χ and ϕ odd to stabilise DM

DMFV and the mass spectrum

DMFV ansatz ties DM mass spectrum to coupling strength via spurion expansion

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \operatorname{\mathsf{Re}}(\lambda^{\dagger} \lambda) + \dots)_{ii} \simeq m_{\chi} \left[1 + \eta D_i^2 \right]$$

Standard hierarchy

DMFV and the mass spectrum

DMFV ansatz ties DM mass spectrum to coupling strength via spurion expansion

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \operatorname{\mathsf{Re}}(\lambda^{\dagger} \lambda) + \dots)_{ii} \simeq m_{\chi} \left[1 + \eta D_i^2 \right]$$

Inverse hierarchy

Experimental constraints

Acaroğlu, MB (2021)

• flavour constraints: neutral D meson mixing

- direct detection limits: latest results from LZ experiment
- indirect detection constraints: cosmic-ray antiproton flux from AMS-02
- DM relic density: different possible freeze-out scenarios
- LHC searches: depending on dark spectrum

Freeze-out

DM freeze-out scenarios I: standard WIMP freeze-out

DM freeze-out scenarios II: coannihilation

GRIEST, SECKEL (1991); BELL, CAI, MEDINA (2013)

DM freeze-out scenarios II: coannihilation

GRIEST, SECKEL (1991); BELL, CAI, MEDINA (2013)

DM freeze-out scenarios III: conversion-driven

GARNY, HEISIG, LÜLF, VOGL (2017); D'AGNOLO, PAPPADOPULO, RUDERMAN (2017)

Canonical freeze-out

large couplings: efficient conversions between all \mathbb{Z}_2 -odd particles > thermal equilibrium

Scenarios

Acaroğlu, MB (2021); Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

- Single Flavour Freeze-Out (SFF)
 - significant mass splitting (> 10%) between χ_3 and other odd particles
 - standard WIMP scenario, coannihilations irrelevant
- Quasi-Degenerate Freeze-Out (QDF)
 - small mass splitting (< 1%) between χ_i flavours
 - all flavours contribute equally to freeze-out, according to their couplings
- Generic Canonical Freeze-Out (GCF)
 - no constraint on mass spectrum
 - captures relevant coannihilation effects

Canonical freeze-out scenarios – viable parameter space

- coannihilation effects open up significant region of parameter space
- quasi-degenerate mediator ϕ dilutes relic abundance due to QCD annihilations

ACAROĞLU, MB, HEISIG, KRÄMER, RATHMANN (2023)

Conversion-driven freeze-out

Scenarios

۹	$\chi_2\chi_3$ -conversion $(C_\chi 1_u)$
	$\eta > 0$:
	m_{ϕ}
	$\underline{\qquad}$ $\underline{\qquad}$ $\underline{\qquad}$ m_{χ_3}
	Very weak coupling

Conversion-driven freeze-out

Scenarios

- $\chi_2 \chi_3$ -conversion ($C_{\chi} 1_u$)
- $\chi_3\phi$ -conversion $(C_{\phi}1_u)$

 $\eta > 0$:

Conversion-driven freeze-out

Scenarios

- $\chi_2 \chi_3$ -conversion ($C_{\chi} 1_u$)
- $\chi_3 \phi$ -conversion ($C_{\phi} 1_u$)
- $\chi_{2,3}\phi$ -conversion $(C_{\phi}2_u)$

 $\eta > 0$:

$$\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$$

LHC signatures

Relevant LHC processes

Mediator pair-production

- QCD interactions (c.f. SUSY squarks)
- *t*-channel exchange of χ
- same-sign production due to Majorana nature of $\chi \succ$ enhanced for $uu \rightarrow \phi \phi$

see also Garny, Ibarra, Pato, Vogl (2013)

Acaroğlu, MB (2021) Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Mediator decay

 \bullet determined by flavour structure of λ

- chain decays via intermediate $\chi_{1,2}$ states
- soft and long-lived signatures for quasi-degenerate spectrum and/or small couplings

Current constraints – using SModels v2

Canonical freeze-out

- relevant searches: $jets + \not\!\!\!E_T$, $tops + \not\!\!\!E_T$
- increased reach due to same-sign channel

Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Conversion-driven freeze-out (C_{ϕ})

- relevant limit: stable R-hadrons
- intermediate lifetimes not constrained
 > opportunity for future LLP searches

Majorana-specific signatures I: same-sign tops

Same-sign top signature

Acaroğlu, MB (2021)

 $pp \to \phi \phi \to tt + \not\!\!E_T$

- top charges accessible in dilepton final states
- cross-section in the fb regime

Naive reach estimate using CMS $ttjj + E_T$ search

- different kinematics ➤ not fully applicable
- highest reach for non-zero DM mass
- rate suppressed by ${\rm BR}(t\to b\ell\nu)^2\sim 0.05$ and requirement of extra jets
- \succ not competitive (?) with jets+ $\not\!\!\!E_T$

Majorana-specific signatures II: single-top charge asymmetry

Single-top signature and charge asymmetry

- flavoured DM ➤ flavour-violating LHC final states MB, KAST (2017)

MB, Pani, Polesello, Rovedi (2020)

• consider single-top charge asymmetry

$$a_{tj} = \frac{\sigma(tj + \not\!\!\!E_T) - \sigma(\bar{t}j + \not\!\!\!\!E_T)}{\sigma(tj + \not\!\!\!\!E_T) + \sigma(\bar{t}j + \not\!\!\!\!\!E_T)}$$

• $a_{tj} > 0$ only for Majorana flavoured DM

highly promising smoking gun signature!

Acaroğlu, MB, Heisig, Krämer, Rathmann (2023)

Conclusions

Flavored Majorana dark matter

- potential link between flavour and dark matter puzzles
- rich phenomenology in direct & indirect detection, flavour and collider physics
- large regions of viable parameter space

Dark matter freeze-out scenarios

- canonical
 - standard WIMP
 - coannihilation
- conversion-driven
 - different possibilities depending on flavour structure

LHC signatures

- current gaps in LHC searches
 - complex decay chains, esp. with soft final states
 - long-lived particles (intermediate lifetimes)
 - flavour-violating final states
- Majorana-specific signatures
 - same-sign tops suffer from small ${\rm BR}(t\to b\ell\nu)$
 - single-top charge asymmetry promising