Progress and future prospects from Lattice QCD

The Flavour Path to New Physics

University of Zürich 05.06.2024

Andreas Jüttner

University of Southampton

Testing the Standard Model

- searches for new physics
 - direct searches 'bump in the spectrum'

We will now look at Lattice QCD's role in *indirect searches*

• *indirect searches* – SM provides relations between processes; we can therefore use experiment + theory to over-constrain SM

Theory can be hard:

- accuracy important

But SM helps us a bit:

SM theory

• all three sectors of SM contribute

 Weak gauge bosons so heavy that we can replace them by point-interaction described by an Effective Hamiltonian H_W (conveniently we thereby *get rid* of a very high energy scale)

> Theory predictions require computations in weak eff. theory, QCD and QED

Status with "good control" — FLAG

Quantity	Sec.	$N_f = 2 + 1 + 1$	Refs.	$N_f = 2 + 1$	Refs.	$N_f = 2$	Refs.	Quantity	Sec.
m_{ud} [MeV]	3.1.4	3.410(43)	[6, 7]	3.381(40)	[8-12]			$f_D[MeV]$	7.1
m_s [MeV]	3.1.4	93.43(70)	[6, 7, 13, 14]	92.2(1.1)	[8-11, 15]			$f_{D_{\rm e}}[{\rm MeV}]$	7.1
m_s/m_{ud}	3.1.5	27.250(64)	_]			f_{D_8}	7.1
m_u [MeV]	3.1.6	2.14(8)	quark	mass	es			$\frac{\overline{f_D}}{fD\pi(0)}$	7.1
m_d [MeV]	3.1.6	4.70(5)	quant					$f_{\pm}^{\mu}(0)$	[1.2
m_u/m_d	3.1.6	0.465(24)	[19, 21]	0.485(19)	[20]			$f_{+}^{DR}(0)$	7.2
$\overline{m}_c(3 \text{ GeV})[\text{GeV}]$	3.2.2	0.988(11)	[6, 7, 14, 22, 23]	0.992(6)	[11, 24, 25]			$f_B[MeV]$	8.1
m_c/m_s	3.2.3	11.768(34)	[6, 7, 14]	11.82(16)	[24, 26]			$f_{B_s}[\text{MeV}]$	8.1
$\overline{m}_b(\overline{m}_b)[\text{GeV}]$	3.3	4.203(11)	[6, 27-30]	4.164(23)	[11]			$\frac{f_{B_s}}{f_{D_s}}$	8.1
$f_{+}(0)$	4.3	0.9698(17)	[21 20]	0.0677(97)	[22 24]	0.9560(57)(62)	[35]	$\int_{a}^{b} \int_{a}^{b} [M_{a}V]$	0.0
$f_{K^{\pm}}/f_{\pi^{\pm}}$	4.3	1.1932(21)	koop	dooo		1.205(18)	[44]	$\int B_d \sqrt{B_{B_d}[\text{MeV}]}$	0.2
$f_{\pi^{\pm}}[\text{MeV}]$	4.6		Kaon	ueca	ly			$f_{B_s}\sqrt{\hat{B}_{B_s}}[\text{MeV}]$	8.2
$f_{K^{\pm}}[\text{MeV}]$	4.6	155.7(3)	× · · ·			157.5(2.4)	[44]	\hat{B}_{B_d}	8.2
$\Sigma^{1/3}$ [MeV]	5.2.4	286(23)	[45, 46]	272(5)	[12, 47–51]	266(10)	[45, 52–54]	\hat{B}_{B}	8.2
F_{π}/F	5.2.4	1				3(15)	[52–54, 57]	¢	82
$\bar{\ell}_3$	5.2.4		-enera	vcon	etante	(82)	[52, 53, 57]	P_{-}/P_{-}	0.2
$\bar{\ell}_4$	5.2.4		Chief B.	y CON		(28)	[52, 53, 57, 58]	D_{B_s}/D_{B_d}	0.2
$\bar{\ell}_6$	5.2.4					15.1(1.2)	[53, 57]	Quantity	Sec.
\hat{B}_K	6.3	0.717(18)(16)	[59]	0.7625(97)	[8, 60 <mark>-62]</mark>	0.727(22)(12)	[63]	$\alpha_{\overline{MS}}^{(5)}(M_Z)$	9.11
B_2	6.4	0.46(1)(3)			4]	0.47(2)(1)	[63]	$\Lambda_{\overline{M}}^{(5)}$ [MeV]	9.11
B_3	6.4	0.79(2)(5)	Kaon	<u>mixir</u>	4]	0.78(4)(2)	[63]	$\Lambda^{(4)}$ [MeV]	0 1 1
B_4	6.4	0.78(2)(4)		0	4]	0.76(2)(2)	[63]	$\frac{1}{MS}$ [WIEV]	0.11
B_5	6.4	0.49(3)(3)	[59]	0.720(38)	[62, 64]	0.58(2)(2)	[63]	$\Lambda_{\overline{\rm MS}}^{(0)}[{ m MeV}]$	9.11

Quantity	Sec.	$N_f = 2 + 1 + 1$	Refs.	$N_f = 2 + 1$	Refs.	$N_f = 2$	Refs.
g_A^{u-d}	10.3.1	1.246(28)	[88-90]	1.248(23)	[91, 92]		
g_S^{u-d}	10.3.2	1.02(10)	[88]				
g_T^{u-d}	10.3.3	0.989(34)	[88]				
g^u_A	10.4.1	0.777(25)(30)	[93]	0.847(18)(32)	[91]		
g^d_A	10.4.1	nucloo	n ma	trix alor	monte		
g^s_A	10.4.1	nucleo					
$\sigma_{\pi N}$ [MeV]	10.4.4	64.9(1.5)(13.2)	[22]	39.7(3.6)	[94-96]	37(8)(6)	[97]
$\sigma_s[\text{MeV}]$	10.4.4	41.0(8.8)	[<mark>98</mark>]	52.9(7.0)	[94-96, 98, 99]		
g_T^u	10.4.5	0.784(28)(10)	[100]				
g_T^d	10.4.5	-0.204(11)(10)	[100]				
g_T^s	10.4.5	-0.0027(16)	[100]				

 $D_{(s)}$ SL decays $B_{(s,c)}$ SL decays Λ_b SL decays

1st, 2nd row CKM ME

$N_f = 2 + 1 + 1$	Refs.	$N_f = 2 + 1$	Refs.	$N_f = 2$	Refs.		
212.0(7)	[17, 37]	209.0(2.4)	[65-67]	208(7)	[68]		
249.9(5)			69]	246(4)	[68, 70]		
1.1783(16	(c)-mes	on de	cay	1.20(2)	[68]		
0.612(35)							
0.7385(44)	[71]	0.747(19)	[73]				
190.0(1.3		_		188(7)	[68, 80]		
230.3(1.3	(_n)-mes	on de	cay	225.3(6.6)	[68, 70, 80]		
1.209(5)	(S)		81]	1.206(23)	[68, 80]		
		225(9)	[78, 82, 83]	216(10)	[68]		
			8, 82, 83]	262(10)	[68]		
	$B_{(-)}$ -n	nixina	8, 82, 83]	1.30(6)	[68]		
	-(s)	3	8, 82, 83]	1.32(5)	[68]		
		1.206(17)	[78, 83]	1.225(31)	[68]		
		1.032(38)	[78, 83]	1.007(21)	[68]		
$N_f = 2 +$	+1 and $N_f = 2 +$	1+1	Refs.				
	0.1184/8)		[11 14 95 94 97]				
strong	strong-coupling constant						
	339(12)		[11, 14, 25, 84-87]	Γ			

 $D \to \pi \ell \nu \qquad D \to K \ell \nu$ $B \to \pi \ell \nu \qquad B_s \to K \ell \nu$ $R(D_s)$ $B_{(s)} \to D_{(s)} \ell \nu \quad B \to D^* \ell \nu$ R(D) $B_c \to (\eta_c, J/\psi)\ell\nu$ $\Lambda_b \to (p, \Lambda_c^{(*)})\ell\bar{\nu} \ \Lambda_b \to \Lambda^{(*)}\ell\ell$ $|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cd}|, |V_{cs}|, |V_{cb}|$

What to do if precision too high?

Current accuracy on some quantities

QCD+QED+strong isospin breaking

quantities: $(g-2)_{\mu}$, hadron spectra (e.g. $M_n - M_p$), decay constants theoretically challenging: formulations: QED_{TL} , QED_L , QED_m , QED_{C^*} , QED_{∞} , ... [Duncan, Eichten, Thacker, PRL 76 (1996)], [Hayakawa, Uni PTP 120 (2008)] [Endres et al., PRL 117 (2016)], [Lucini et al. JHEP 02 (2016)] [Feng et al. PRD 100 (2019), PRD 108 (2023)]

Decay constant:

see M. Di Carlo's Lattice 23 plenary [arXiv:2401.07666]

other quantities:

virtual photon emission [Frezzotti et al. PRD 108 (2023) and arXiv:2403.05404]

semileptonic decay [Christ et al., arXiv:2402.08915]

Leaving precision behind for a moment

two examples for new directions

higher-order electro-weak ME $\langle f | T \{ \mathcal{O}_{EW,2} \mathcal{O}_{EW,1} \} | i \rangle$

Exploration

•

- $K \rightarrow \pi \ell^+ \ell^-$ [RBC/UKQCD, e.g PRD 107 (2023) 1, L011503]
- $K \to \pi \nu \bar{\nu}$ [RBC/UKQCD, e.g. PRD 100 (2019) 11, 114506]
- $B \rightarrow \mu^+ \mu^- \gamma$ [Frezzotti et al. arXiv:2402.03262]

$$\begin{aligned} \text{Expression in Euclidean space:} \\ A_{\mu}^{c}(T_{a}, T_{b}, q^{2}) &= \int_{0}^{\infty} dE \frac{\rho(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | J_{\mu}(0) | E, \mathbf{k} \rangle \langle E, \mathbf{k} | H_{W}(0) | K^{c}(\mathbf{k}) \rangle}{E_{K}(\mathbf{k}) - E} \left(1 - e^{(E)} + \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | H_{W}(0) | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu}(0) | K^{c}(k) \rangle}{E - E_{\pi}(\mathbf{p})} \left(1 - e^{(E)} + \int_{0}^{\infty} dE \frac{\rho_{S}(E)}{2E} \frac{\langle \pi^{c}(\mathbf{p}) | H_{W}(0) | E, \mathbf{p} \rangle \langle E, \mathbf{p} | J_{\mu}(0) | K^{c}(k) \rangle}{E - E_{\pi}(\mathbf{p})} \right) dE \\ \end{aligned}$$

Minkowski-space amplitude:

 $\mathcal{A}^c_\mu(q^2) = \int d^4x \langle \pi^c(p) | T \left[J_\mu(0) H_W(x) \right] | K^c(k) \rangle$

complications arise when considering the amplitude in Euclidean space ...

requires complex control of

- divergent terms,
- on-shell intermediate states
- renormalisation

. . .

 $e^{-(E-E_{\pi}(\mathbf{k}))T_b}$

technically extremely challenging but we are learning how to do these calculations, and there is more to come!

unstable final sates $\langle f_1 f_2 | \mathcal{O}_{\text{EW},1} | i \rangle$

e.g.:

- $B \to \rho \ell \bar{\nu}_{\ell} \to \pi \pi \ell \bar{\nu}_{\ell}$
- $B \to K^* \ell^+ \ell^- \to K \pi \ell^+ \ell^-$

go beyond the narrowwidth approximation, take rescattering of final states into account

comprehensive lattice predictions for $B \rightarrow \rho \ell \nu_{\ell}$ and $B \rightarrow K^* \ell^+ \ell^$ are coming within reach

Coming back to precision

new exp. data, new theory data

... a long-standing puzzle

A) Exclusive decay $B \to D^* \ell \bar{\nu}_{\ell}$:

- new quality of experimental data
- new quality of lattice data

 \rightarrow new and improved analysis techniques

B) Inclusive decay $B \to X_c \ell \bar{\nu}_{\ell}$:

- existing determinations OPE based
- new ideas allow for lattice computations

 \rightarrow discuss new ideas and preliminary results

See also Paolo's talk!

Part I: **QFT** constraints for exclusive semileptonic meson decays

based on work in collaboration with Jonathan Flynn (Southampton) and Tobi Tsang (CERN) [JHEP 12 (2023) 175] • Marzia Bordone (CERN), in preparation

New lattice data

$$\mathbf{a} - B \to D^* \ell \bar{\nu}_{\ell}$$

New lattice data

• four form factors $f, \mathcal{F}_1, \mathcal{F}_2, g$

$$w = \frac{M_B^2 + M_{D^*}^2 - q^2}{2M_B M_{D^*}} \qquad q_\mu = (p_B - p_{D^*})_\mu$$

- first time that lattice data covers kinematical range
- three different and independent collaborations
- just in time for new experimental data ...

range s

New experimental data $-B \rightarrow D^* \ell \bar{\nu}_{\ell}$

New experimental data

• four (normalised) differential decay rates in channels

$$\alpha = w, \cos \theta_{\ell}, \cos \theta_{v}, \chi$$

- between 7 and 10 bins per α
- data available on <u>HEPData</u>
- two experimental collaborations
- just in time for new lattice data ...

$$\begin{aligned} \frac{d\Gamma}{dwd\cos(\theta_{\ell})d\cos(\theta_{v})d\chi} &= \frac{3G_{F}^{2}}{1024\pi^{4}}|V_{cb}|^{2}\eta_{EW}^{2}M_{B}r^{2}\sqrt{w^{2}-1}q^{2} \\ &\times \left\{ (1-\cos(\theta_{\ell}))^{2}\sin^{2}(\theta_{v})H_{+}^{2}(w) + (1+\cos(\theta_{\ell}))^{2}\sin^{2}(\theta_{v})H_{-}^{2}(w) \right. \\ &+ 4\sin^{2}(\theta_{\ell})\cos^{2}(\theta_{v})H_{0}^{2}(w) - 2\sin^{2}(\theta_{\ell})\sin^{2}(\theta_{v})\cos(2\chi)H_{+}(w)H_{-}(w) \\ &- 4\sin(\theta_{\ell})(1-\cos(\theta_{\ell}))\sin(\theta_{v})\cos(\theta_{v})\cos(\chi)H_{+}(w)H_{0}(w) \\ &+ 4\sin(\theta_{\ell})(1+\cos(\theta_{\ell}))\sin(\theta_{v})\cos(\theta_{v})\cos(\chi)H_{-}(w)H_{0}(w) \right\} \end{aligned}$$

How to best analyse this new quality of data as part of a precision test of the SM?

Form-factor parameterisation $f_X(q_i^2) = \frac{1}{B_X(q_i^2)\phi_X(q_i^2, t_0)} \sum_{n=0}^{K_X-1} a_{X,n} z(q_i^2)^n \quad \text{unitarity constraint:} \ |\mathbf{a}_X|^2 \leq 1$ [Boyd, Grinstein, Lebed, ...

Determine all $a_{X,n}$ from finite set of theory data

Frequentist fit: • $N_{dof} = N_{data} - K_X \ge 1$

 \rightarrow in practice truncation K at low order

- induced systematic difficult to estimate
- meaning of Frequentist with unitarity constraint?

Bayesian fit:

- fit including higher order z expansion meaningful
- unitarity regulates and controls higher-order coefficients [Flynn, AJ, Tsang JHEP 12 (2023) 175] well-defined meaning of unitarity constraint

Recommendation: Combined Frequentist + Bayesian perspective

[Boyd, Grinstein, Lebed, PRL 74 (1995)]

[Okubo, PRD 3, 2807 (1971), PRD 4, 725 (1971)] [Okubo, Shih, PRD 4, 2020 (1971)] [Boyd, Grinstein, Lebed, PLB 353, 306 (1995), NPB461, 493 (1996). PRD 56, 6895 (1997)]

Also have a look: Dispersive-matrix method, Di Carlo et al. PRD 2021

Strategy A: Fit to lattice data

[Bordone, AJ in preparation]

Frequentist fit

K_{i}	$_{f} K_{F}$	$F_1 K_F$	$F_2 K_g$	$a_{g,0}$	$a_{g,1}$	$a_{g,2}$	$a_{g,3}$	p	$\chi^2/N_{ m dof}$	$N_{ m dof}$
2	2	2	2	0.03138(87)	-0.059(24)	-	-	0.95	0.62	30
3	3	3	3	0.03131(87)	-0.046(36)	-1.2(1.8)	-	0.90	0.67	26
4	4	4	4	0.03126(87)	-0.017(48)	-3.7(3.3)	49.9(53.6)	0.79	0.75	22

- good fit quality
- lattice data *superficially* compatible (covariance contains systematic effects...)
- no unitarity constraint

Bayesian inference

K_{j}	$_{f} K_{F}$	$_{1} K_{F}$	$K_2 K_g$	$a_{g,0}$	$a_{g,1}$	$a_{g,2}$	$a_{g,3}$	
2	2	2	2	0.03133(80)	-0.058(25)	-	-	
3	3	3	3	0.03129(81)	-0.062(27)	-0.10(55)	-	
4	4	4	4	0.03134(86)	-0.061(25)	-0.10(50)	-0.04(49)	

- unitarity constraint regulates higher-order coefficients
- truncation independent

Strategy B: Fit to lattice + exp.data

[Bordone, AJ in preparation]

 BGL fit to only lattice data (strategy A) misses experimental points for two of the lattice data sets

• BGL fit to experimental and lattice data of good quality

Frequentist fit quality good lat $(p, \chi^2/N_{dof}, N_{dof}) = (0.79, 0.75, 22)$ lat+exp $(p, \chi^2/N_{dof}, N_{dof}) = (0.18, 1.15, 56)$

• some BGL coefficients shift between strategy A) and B) by up to a few $\sigma \rightarrow$ but precision of lattice data allows for enough wiggle room

ation] nts

Other observables

- lat+exp: lattice consistent, experiments inconsistent
- parameterisation-based observables show high degree of sensitivity

[Bordone, AJ in preparation]

Bernlochner et al. [24] HFLAV Moriond 2024 (exp. average) [54]

exp+lat: JLQCD 23, HPQCD 23, FNALMILC 21 exp+lat: JLQCD 23, FNALMILC 21 exp+lat: FNALMILC 21, HPQCD 23 exp+lat: JLQCD 23, HPQCD 23 exp+lat: FNALMILC 21

lat: JLQCD 23, HPQCD 23, FNALMILC 21 lat: JLQCD 23, FNALMILC 21 lat: FNALMILC 21, HPQCD 23 lat: JLQCD 23, HPQCD 23

• lat: scatter from different lattice collaborations concerning (2-3 σ) (see also [Fedele et al. PRD 108, 055037 (2023)])

analysis reveals tensions amongst lattice as well as amongst experimental data sets

$|V_{cb}|$ – Strategy A: different lattice input – different

JLQCD 23

- New AIC-based approach works nicely and reduces bias likely due to d'Agostini
- some lattice data however problematic and at odds with expectation
- in particular analysis of angular distributions problematic?
- discard analysis $X = \cos \theta_{v}, \cos \theta_{\ell}, \chi$?

[Bordone, AJ in preparation]

$|V_{cb}|_{AIC} = 0.0395(17)$ $|V_{cb}|_{AIC} = 0.04035(99)$ $|V_{cb}|_{\rm AIC} = 0.0416(22)$ $= 0.0383(13) \ (p, \chi^2/N_{\rm dof}, N_{\rm dof}) = (0.09, 1.70, 1.70, 1.70)$ $|V_{cb}|_{\text{Frequ.}} = 0.0386(15) \ (p, \chi^2/N_{\text{dof}}, N_{\text{dof}} = (0.03, 2.17, 8)$ $|V_{cb}|_{\text{Frequ.}} = 0.04031(92) \ (p, \chi^2/N_{\text{dof}}, N_{\text{dof}} = (0.75, 0.63, 8)$ 0.046 0.0460.0460.0440.0440.044 $\frac{\overline{\overset{\mathfrak{s}}{\succeq}} 0.042}{\overset{\mathfrak{s}}{\succeq} 0.040}$. 0.042 ≥ 0.040 ≥ 0.040 0.038 0.0380.0380.00.5-1.01.01.01.21.30.01.4 $\cos \theta_v$ 11) $\cos \theta_v$ $|V_{cb}|_{\rm AIC} = 0.0394(15)$ $|V_{cb}|_{AIC} = 0.0395(15)$ $|V_{cb}|_{\rm AIC} = 0.0411(18)$ $= 0.0387(14) \ (p, \chi^2/N_{\rm dof}, N_{\rm dof}) = (0.17, 1.45, 8)$ = 0.0392(14) (p, χ^2/N_{dof} , $N_{dof} = (0.16, 1.47, 8)$ $V_{cb}|_{\text{Frequ.}} = 0.0399(17) \ (p, \chi^2/N_{\text{dof}}, N_{\text{dof}} = (0.12, 1.60, 8)$ 0.0460.0460.046 0.0440.0440.044 $\frac{\overline{\overset{\circ}{\succ}}}{\overset{\circ}{\succeq}} 0.042}{0.040}$ $\frac{\overline{\overset{\circ}{\succ}} 0.042}{\underline{\overset{\circ}{\succ}} 0.040}$ $\frac{\overline{\dot{s}}}{\underline{\dot{s}}} \frac{0.042}{0.040}$ 0.0380.0380.038-1.0-0.50.50.0 1.0 $\cos \theta_{\ell}$ FNAL/MILC 21 $|V_{cb}|_{AIC} = 0.03983(94)$ $|V_{cb}|_{AIC} = 0.0424(18)$ $V_{cb}|_{\text{Frequ.}} = 0.0388(13) \ (p, \chi^2/N_{\text{dof}}, N_{\text{dof}} = (0.00, 2.82, 8)$ $= 0.03965(88) \ (p, \chi^2/N_{dof}, N_{dof} = (0.43, 1.01, 8)$ 0.0460.0460.0440.044 $\overline{\overset{\overline{s}}{\succeq}}^{0.042}_{0.040}$ $\frac{\overline{\overset{\mathfrak{s}}{\succeq}}}{\overset{\mathfrak{s}}{\succeq}} \frac{0.042}{0.040}$ 0.0380.038 1.21.3-0.51.01.4-1.00.0 $\cos \theta_v$ $V_{cb}|_{AIC} = 0.0418(16)$ $|V_{cb}|_{AIC} = 0.0403(17)$ $|V_{cb}|_{\text{Frequ.}} = 0.0407(14) \ (p, \chi^2/N_{\text{dof}}, N_{\text{dof}} = (0.08, 1.76, 8)$ $= 0.0390(12) \ (p, \chi^2/N_{\rm dof}, N_{\rm dof} = (0.05, 1.93, 8)$ 0.0460.046

0.044 -

0.038

-1.0

-0.5

0.0

 $\cos \theta_{\ell}$

 $\frac{\overline{\dot{s}}^{0.042}}{\underline{\dot{s}}^{0.040}}$

HPQCD 23

0.044

0.038

 $-\pi$

 $-\frac{\pi}{2}$

 $\frac{\overline{\overset{\circ}{\succ}}}{\overset{\circ}{\succeq}} \overset{0.042}{_{0.040}}$

1.0

0.5

20

- Summary

[Bordone, AJ in preparation]

- comparison of different lattice and experimental input
- by and large good agreement (especially if angular bins discarded from AIC)

strategy A) BGL fit to lattice data, then combination with experiment strategy B) BGL fit to both lattice and experiment

- We find no noteworthy tensions between the results from both strategies
- This analysis confirms a slight tension with inclusive analyses

See also analysis within dispersive-matrix method, Martinelli et al. EPJC (2024)

Part II: QFT constraints for inclusive meson decays (on the lattice)

ongoing work in collaboration with Alessandro Barone (Soton \rightarrow Mainz) Ahmed Elgazhari (Soton) Shoji Hashimoto (KEK) Takashi Kaneko (KEK) **Ryan Kellermann (KEK)** Hu Zhi (KEK)

JHEP 07 (2023) 145

Hansen et al. (2017) PRD 96 094513 (2017) Hashimoto PTEP 53-56 (2017) **Bailas et al. PTEP 43-50 (2020)** Gambino and Hashimoto PRL 125 32001 (2020) Barone et al. JHEP 07 (2023) 145

Inclusive SL decay in the SM

We consider the case $B_s \to X_c \ell \nu$:

$$W^{\mu\nu}(p_{B_s},q) = \frac{1}{2E_{B_s}} \sum_{X_c} (2\pi)^3 \delta^{(4)}(p_{B_s} - q - p_{X_c})$$

from now on B_s at rest ($\mathbf{p}_{B_s} = \mathbf{0}$)

$\sum_{c} \langle B_s(\mathbf{p}_{B_s}) | (\tilde{J}^{\mu}(q^2))^{\dagger} | X_c(p_{X_c}) \rangle \langle X_c(p_{X_c}) | \tilde{J}^{\nu}(q^2) | B_s(\mathbf{p}_{B_s}) \rangle$

- integration ove
- ω is energy of intermediate state X_c

lattice computation of 4pt function

$$C_{\mu\nu}(t,\mathbf{q}) = \int_{\omega_{\rm m}}^{\infty}$$

 $d\omega W_{\mu\nu}(\omega,\mathbf{q}) e^{-\omega t}$ ω_{\min}

expansion of leptonic kernel:

$$k^{\mu\nu}(\omega,\mathbf{q}) = \sum c_{\mu\nu}(\mathbf{q})(e^{-a\omega})^n$$

SL decay

$$\sum_{\omega_{\min} = \sqrt{M_{D_s}^2 + q^2}} w_{\max} = \frac{M_{B_s}^2 - \sqrt{q^2}}{M_{M_s}^2} \quad q_{\max}^2 = \frac{M_{B_s}^2 - \sqrt{q^2}}{M_s}$$

$$\varphi = \frac{G_F^2 |V_{cb}|^2}{24\pi^3} \int_0^{q_{\max}^2} dq^2 \sqrt{q^2} \int_{\omega_{\min}}^{\omega_{\max}} d\omega W_{\mu\nu}(\omega, q) k^{\mu\nu}(\omega, q) k^{\mu\nu}($$

q is three-momentum transfer

$$\bar{X}(\mathbf{q}) = \sum_{k} c_{\mu\nu,k}(\mathbf{q}) \int d\omega W_{\mu\nu}(\omega, \mathbf{q}) e^{-\omega k}$$
$$= \sum_{k} c_{\mu\nu,k}(\mathbf{q}) C_{\mu\nu}(ak, \mathbf{q})$$

Useless in practice due to deteriorating signal-to-noise in 4pt function \rightarrow need to improve

Improvement: expand in shifted Chebyshev polynomials $\tilde{T}(e^{na\omega})$

$$\bar{X}(\mathbf{q}) = \sum_{k} \tilde{c}_{\mu\nu,k}(\mathbf{q}) \int d\omega W_{\mu\nu}(\omega, \mathbf{q}) \tilde{T}_{k}(\omega, \mathbf{q})$$
$$= \sum_{k,j} \tilde{c}_{\mu\nu,k}(\mathbf{q}) \langle \tilde{T}_{k} \rangle_{\mu\nu}$$

- $C_{\mu\nu}(t)$ monotonously decreasing with t

Chebyshev reconstruction

Barata, Fredenhagen, Commun.Math.Phys. 138 (1991) 507-520, Bailas et al. PTEP 43-50 (2020), Gambino and Hashimoto PRL 125 32001 (2020)

$$\langle \tilde{T}_k \rangle_{\mu\nu} = \frac{\sum_{j=0}^k \tilde{t}_j^{(k)} C_{\mu\nu} (j+2t_0)}{C_{\mu\nu} (2t_0)}$$

• we use $|\langle \tilde{T}_k \rangle_{\mu\nu}| \le 1$ as uniform Bayesian prior (i.e. regulator)

• $\tilde{c}_{\mu\nu,k}$ turn out to be nicely behaved — suppression of higher-order terms

Kernel approximation V) e.g. $K_{\sigma,00}^{(0)}(\mathbf{q},\omega;t_0) = e^{2\omega t_0} \mathbf{q}^2 \theta_{\sigma}(\omega_{\max}-\omega)$ \sim $\mathcal{D})$

$$K_{\mu\nu}(\omega, \mathbf{q}; t_0) = e^{2\omega t_0} k_{\mu\nu}(\omega, \mathbf{q},) \theta_{\sigma}(\omega_{\max} - \omega_{\max}) \theta_{\sigma}(\omega_{\max} - \omega_{\max}$$

$$\tilde{c}_{k} = \langle K, \tilde{T}_{k} \rangle = \int_{\omega_{0}}^{\infty} d\omega \, K_{\mu\nu}(\omega, \mathbf{q}) \tilde{T}_{k}(\omega) \tilde{\Omega}(\omega, \mathbf{q}) \tilde{T}_{k}(\omega, \mathbf{q}) \tilde{T}_{k}(\omega) \tilde{\Omega}(\omega, \mathbf{q}) \tilde{T}_{k}(\omega, \mathbf{q}) \tilde{$$

- this analysis stage independent of data
- smearing σ
- order of approximation $N \leftrightarrow C_{\mu\nu}(t)$
- we can play with ω_0

Exploratory study

•
$$B_s \to X_c \ell \nu$$

- lattice study on $24^3 \times 64$ RBC/UKQCD DWF ensemble ($M_{\pi}^{\text{sea}} \approx 330 \,\text{MeV}$)
- physical m_s and m_b -quark masses (RHQ action for b) near-physical m_c (domain-wall)
- implemented in <u>Grid/Hadrons</u>
- run on <u>DiRAC</u> Extreme-scaling service <u>Tursa</u> (A100-40 nodes)
- 120 gauge configs, 8 Z_2 noise-source planes

data opens up opportunities for a number of novel studies!

Contributions from various channels

Approach provides for nice laboratory to understand and probe contributions to inclusive decay from various sources

Here: $A_i A_i$ channel appears dominant

Ground-state contribution?

How big is the ground-state contribution to inclusive decay? (D_s for $B_s \to X_c \ell \bar{\nu}_\ell$)

Contribution to hadronic tensor:

$$W_{\mu\nu} \to \delta(\omega - E_{D_s}) \frac{1}{4M_{B_s} E_{D_s}} \langle B_s | J_{\mu}^{\dagger} | D_s \rangle \langle D_s | J_{\nu} | B_s \rangle$$

Compute $B_{s} \rightarrow D_{s}$ matrix elements on the lattice:

 $\langle D_s | V_\mu | B_s \rangle = f_+(q^2)(p_1)$

$$\bar{X}_{VV}^{\parallel} \to \frac{M_{B_s}}{E_{D_s}} \mathbf{q}^2 |f_+(q^2)|^2$$

$$(p_{B_s} + p_{D_s})_{\mu} + f_{-}(q^2)(p_{B_s} - p_{D_s})_{\mu}$$

Ground-state contribution?

- Results for exclusive channel agree for both ways of data analysis (standard 3pt vs. Chebychev)
- clear distinction between ground-state and full inclusive determination

Hadronic moments

Detailed study lattice vs. OPE:

- (one lattice spacing, one volume, unphysical charm mass, ...)
- Plots only to convey idea of potential for future detailed studies
- Could allow understanding origin of puzzle (if on theory side)

[Barone, Fael, Jüttner, ongoing]

• Lattice data without systematics, i.e. comparison super-preliminary and qualitative

Summary & Outlook

New precision

- to flavour physics
- simulations of QCD+QED+strong IBB

- be tackled (e.g. rare decays)

- techniques more data to come in...

New data

• FLAG remains the goto-place to get a good impression of where LQCD has good control of systematic effects for quantities relevant

sub-percent precision requires new thinking and new developments:

New directions • long-distance effects in EW processes require developing new ideas and pushing frontiers — but developments show that challenges can

• $P \rightarrow V +$ leptons now being attacked by community

• inclusive decays on the lattice might shed light on incl./excl. puzzle

new quality of experimental and lattice data requires new analysis

CONTINUUM FOUNDATIONS OF LATTICE GAUGE THEORIES

Dispersive methods Inverse Problems Quantum Computing Resurgence

SDU University of Southern Denmark $\hbar^{\rm QUANTUM}_{\rm THEORY\,CENTER}$

Justus Tobias Tsang (CERN, Chair) Michele Della Morte (Odense) Matteo Di Carlo (CERN) Felix Erben (CERN)

Registration at: https://indico.cern.ch/event/1342488

FIRST CERN-NORDIC SCHOOL 22-26 July 2024, CERN, Geneva

Lectures

Gilberto Colangelo (Bern) Luigi Del Debbio (Edinburgh) Zohreh Davoudi (Maryland) Gerald Dunne (Connecticut)

Organisers

Andreas Jüttner (CERN/Southampton) Simon Kuberski (CERN) Alexander Rothkopf (Stavanger)

Bayesian form-factor fit

Compute BGL parameters as expectation values

where probability for parameters given model and data (assume input Gaussian)

$$\pi(\mathbf{a} | \mathbf{f}, C_{\mathbf{f}}) \propto \exp\left(-\frac{1}{2}\chi^2(\mathbf{a}, \mathbf{f})\right)$$

In practice MC integration: draw samples for a from multivariate normal distribution and drop samples not compatible with unitarity

Flynn, AJ, Tsang, <u>JHEP 12 (2023) 175</u>

$$\langle g(\mathbf{a}) \rangle = \mathcal{N} \int d\mathbf{a} g(\mathbf{a}) \pi(\mathbf{a} | \mathbf{f}, C_{\mathbf{f}}) d\mathbf{a} g(\mathbf{a} | \mathbf{f}, C_{\mathbf{f}}) d\mathbf{a} g$$

where
$$\chi^2(\mathbf{a}, \mathbf{f}) = (\mathbf{f} - \mathbf{f}_{BGL})^T C_{\mathbf{f}}^{-1} (\mathbf{f} - \mathbf{f}_{BGL})$$

where prior knowledge is only QFT unitarity constraint (flat prior for BGL params): $\pi_{\mathbf{a}} \propto \theta \left(1 - |\mathbf{a}_X|^2 \right)$

- Strategy A: Fit to lattice data V_ch

$$|V_{cb}|_{\alpha,i} = \left(\Gamma_{\exp} \left[\frac{1}{\Gamma} \frac{d\Gamma}{d\alpha} \right]_{\exp}^{(i)} / \left[\frac{d\Gamma_0}{d\alpha} (\mathbf{a}) \right]_{\mathrm{lat}}^{(i)} \right)^{1/2}, \quad \text{where} \quad \Gamma_{\exp} = \frac{\mathscr{B}(B^0 \to D^{*,-} \mathscr{C}^+ \nu_{\mathscr{C}})}{\tau(B^0)},$$

[Bordone, AJ in preparation]

- blue: Frequentist fit $(p, \chi^2/N_{dof}, N_{dof}) = (0.00, 2.82, 8)$
 - d'Agostini Bias? [d'Agostini, Nucl.Instrum.Meth.A 346 (1994)]
- Akaike-Information-Criterion analysis [H. Akaike IEEE TAC (19,6,1974)] red: • average over all possible fits with at least two data points and then weighted average:

$$w_{\{\alpha,i\}} = \mathcal{N}^{-1} \exp\left(-\frac{1}{2}(\chi_{\{\alpha,i\}}^2 - 2N_{\mathrm{dof},\{\alpha,i\}})\right) \qquad \qquad \mathcal{N} = \sum_{\mathrm{set}\in\{\alpha,i\}} v_{\mathrm{set}}$$
$$|V_{ch}| = \langle |V_{ch}| \rangle \equiv \sum_{w_{\mathrm{set}}} |V_{ch}|_{\mathrm{set}}$$

result more sensible and bias apparently reduced

set \in { α , *i*}

Kernel approximation

$\bar{X}(\mathbf{q}) \approx c_{\mu\nu,0}(\mathbf{q}) \ C_{\mu\nu}(0,\mathbf{q}) + c_{\mu\nu,1}(\mathbf{q}) \ C_{\mu\nu}(a,\mathbf{q}) + c_{\mu\nu,2}(\mathbf{q}) \ C_{\mu\nu}(2a,\mathbf{q}) + \dots$

instead of in $(e^{-a\omega})^n$ we now expand in shifted Chebyshev polynomials Barata, Fredenhagen, <u>Commun.Math.Phys. 138 (1991) 507-520</u>, <u>Bailas et al. PTEP 43-50 (2020</u>), <u>Gambino and Hashimoto PRL 125 32001 (2020</u>)

$$\tilde{T}_k(\omega)$$
 : $[\omega_0, \infty] \to [-1, 1]$

$$K_{\mu\nu}(\omega, \mathbf{q}) \approx \frac{\tilde{c}_{\mu\nu,0}}{2} + \sum_{k=1}^{N} \tilde{c}_{\mu\nu,k} \tilde{T}_{k}(\omega)$$

$$\tilde{T}_k(\omega) = \sum_{j=0}^k \tilde{t}_j^{(k)} e^{-ja\omega}$$

$$\tilde{c}_{\mu\nu,k} = \int_{\omega_0}^{\infty} d\omega \, K_{\mu\nu}(\omega, \mathbf{q}) \tilde{T}_k(\omega) \tilde{\Omega}(\omega)$$