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Agenda

1. Quantum Computing
2. Quantum Annealing
3. Digital Annealer
4. QUBOs and Ising Models
5. Knapsack Problems
6. Problem Formulation
7. Graph Coloring Problem
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Quantum Annealing
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Computación Clásica vs. Cuántica 

Computación Clásica Computación Cuántica
Basada en transistores, que pueden  tener los 
valores 0 o 1

Basada en qubits, que pueden tener los valores 0  
y 1 al mismo tiempo

La potencia se incrementa en relación 1:1 con el 
número de transistores

La potencia se incrementa exponencialmente en 
proporción al número de qubits

Menores ratios de error y operan a temperatura 
ambiente

Tienen mayores ratios de error y necesitan 
condiciones extremas (temperatura y/o vacío)

Quantum Inspired Quantum Simuator Quantum Annealing Gate-based Quantum Computers

Classical HW Quantum HW
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Quantum Annealing

What kind of problems can be solved?

Optimization problems: Problems where we are looking for a unique optimal solution, that matches the ground state of the Hamiltonian

Sampling problems: Problems where we are looking for several low energy states, either because several good enough solutions are 
available (we may not need the best solution out there), or when we intend to reconstruct the energy landscape to build a model of 
reality

Combinatorial Optimization Problems

A general combinatorial optimization problem consists of:

● Set of Binary Variables

● Target Function

● Set of constraints

The goal is to determine the best assignment of variables so that the target function is optimized, 
while satisfying all constraints.

If each pair of cities are connected, # of possible travelling paths:

=42! ~1051 for 43 cities (# atoms in the earth ~1050)

=59! ~1080 for 60 cities (# atoms in the universe ~1080)
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Quantum Annealing

1. The solution of a problem is encoded into the ground state of a time-
dependent quantum Hamiltonian.

2. Physical devices called Quantum Annealers are used in which we start from
an initial Hamiltonian with a well-known ground state.

3. The Hamiltonian evolves over a limited time into a new Hamiltonian in which
the problem of interest is encoded.

4. The solution of the problem will be encoded in the ground state of the
Hamiltonian of interest.

✓ The adiabatic theorem says that if we evolve slow enough the system
from one Hamiltonian to another the system will stay always in the
ground state.

✓ The “speed” should be inversely proportional to the difference between
the distance between the minimum gap.

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Quantum Annealing
For a quantum system, a Hamiltonian is a function that maps certain states, called eigenstates, to energies. The collection of
eigenstates with defined eigen energies make up the eigen spectrum.

For a quantum annealer, the Hamiltonian may be represented as

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

F(v)=

https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Quantum Annealing

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

The physics of this process can be visualized with an energy diagram as depicted below. This diagram changes over time, through the
following steps:

1) We start with a single valley in the energy landscape, that represents our initial superposition state.

2) The quantum annealing process starts, the potential barrier is raised, and this turns the energy diagram into what is known as a
double-well potential. Here, the low point of the left valley corresponds to the 0 state, and the low point of the right valley
corresponds to the 1 state. The qubit will end up in one of these valleys at the end of the annealing process.

3) Everything else being equal, the probability of the qubit ending in the 0 or the 1 state would be equal. You can, however, control the
probability of it falling into the 0 or the 1 state by applying an external magnetic field to the qubit. This field tilts the double-well
potential, increasing the probability of the qubit ending up in the lower well. The programmable quantity that controls the external
magnetic field is called a bias, and the qubit minimizes its energy in the presence of the bias.

https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Quantum Annealer

✓ The bias term alone would only allow users to play with linear terms, without qubits being able to influence each other.

✓ To achieve this, we use a device called a coupler. A coupler can make two qubits tend to end up in the same state—both 0 or both 1—
or it can make them tend to be in opposite states. Like a qubit bias, the correlation weights between coupled qubits can be
programmed by setting a coupling strength.

✓ When you use a coupler, you are using another phenomenon of quantum physics called entanglement. When two qubits are
entangled, they can be thought of as a single object with four possible states. In that scenario, the energy landscape would show four
states, each corresponding to a different combination of the two qubits: (0,0), (0,1), (1,1), and (1,0). The relative energy of each state
depends on the biases of qubits and the coupling between them.

Source: https://docs.dwavesys.com/docs/latest/c_gs_2.html

https://docs.dwavesys.com/docs/latest/c_gs_2.html
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Digital Annealer
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“The thing driving the hype is the 

realization that quantum 

computing is actually real.

It is no longer a physicist’s dream 

— it is an engineer’s nightmare”

Isaac Chuang

MIT Professor of Physics and 

Engineering

Quantum Computing
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Quantum Computing

Stability Costs & 
Infrastructure

Low ConnectivityAccuracy

Technical Difficulties of Quantum Computing

Digital Annealer: The First Step Towards Quantum Computing

Classical 
Computers

Digital 
Annealer

Quantum 
ComputerDigital Annealer is a solution (hardware + software) inspired by Quantum

Computing, which allows you to solve combinatorial optimization
problems in a very efficient way.

What is Digital Annealer?

Why Digital Annealer?
• Enables the development of quantum applications.
• Hardware-Mature Technology.
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Quantum Inspired: Simulated Annealing

Description
Simulated Annealing (SA) Algorithm is a general-purpose metaheuristic algorithm to solve NP-Hard optimization
problems.

To understand SA, one needs to understand the core idea behind the algorithm and the parameters involved in the
algorithm, which play a vital role in obtaining an optimal/best solution for an NP-hard problem.

Simulated Annealing is conceptually based on metallurgical annealing where a crystalline solid is heated and then
allowed to cool very slowly until it achieves its most stable lattice energy state. If the cooling schedule is sufficiently
slow, the final configuration results in a solid with best structural stability.
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Quantum Inspired: Simulated Annealing

Step by Step

At each iteration of a SA, the algorithm retains the current solution candidate, and generates a new solution. 

The new solution is obtained by selecting a local neighbour of the current solution. If the new solution gives a lower
energy it is accepted. However, if the new solution yields a higher energy, it is not discarded, instead, it is accepted with a
certain probability.

1

2

The key algorithmic feature of SA is that it provides a means to escape local optima by allowing hill-climbing moves
(i.e., moves which worsen the objective function value)
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Quantum Inspired: Simulated Annealing

Aceptance Probability
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Quantum Inspired: Simulated Annealing

Acceptance Probability

This acceptance probability is the basic
element of the search mechanism in SA.

This so called 'Metropolis Acceptance
Criterion' helps the algorithm to avoid
falling into a local minimum. The figure
shows the acceptance of a bad solution
(during hill climbing) and the overall
convergence of SA.
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Quantum Inspired: Simulated Annealing

Annealing Temperatures
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Quantum Inspired: Simulated Annealing

Stopping Criteria

Stopping criteria is important to decide when to stop the annealing process. 

• One of the standard ways is to define a maximum number of iterations that must take place in the annealing 
process

• Another stopping criterion is the stalling energy. One may record some number of previous iterations' energies, and 
the algorithm may be halted if the energies are stalled.

In the DADK, the stopping criterion is the number of iterations. In this criterion, the annealing process explained above 
is executed for the given number of iterations. 
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Quantum Inspired: Simulated Annealing

We now present a short overview of the implementation of the above-mentioned annealing process and its parallelization.

1
Trial Phase:
• a single bit is chosen from the current state, and the energy change for

flipping the bit is computed.
• This energy change is used to determine whether to accept the bit flip in

accordance with the Metropolis-Hastings criterion.
• The Metropolis acceptance of all possible bit flips up to 8192 can be

calculated in parallel.

2 In the update phase, the flip-bit selector selects one bit to be flipped 
and updates the value of that bit In the DA

DA offers 16 independent trial-update processes on different base
states so that 16 independent annealing processes can be
executed in parallel.

Detailed process
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Quantum Inspired: Simulated Annealing

Offset

Imagine your random walk is in a local minimum and the temperature
is so low that the probability of acceptance << 1. With such a low
acceptance probability the annealing process is very unlikely to make
a step.

As one can imagine, the offset value must not be too low, as this would not allow the solution to come out of local
minimum in few steps. Additionally, a very high offset value might totally lose the result of the annealing process, as a very
high offset energy would allow for any new solution to be accepted regardless of how worse the new solution is.
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QUBOs and ISING Models
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QUBOS and Ising Models

QUBO (Quadratic Unconstraint Binary Optimization Problem) is a polynomial of order two at most in which variables are binary. We want to
find the configuration that minimize the polynomial.

Linear Term Quadratic Term

Where:

✓ The constants 𝑎𝑖 and 𝑏𝑖,𝑗 depends on the definition of our problem

✓ The variables 𝑣𝑖 are the values we are looking for. The values for each 𝑣𝑖 that minimize the overall expression, are the solution of our problem

✓ As we are just looking for the global minimum of the expression, the value of the constant 𝑐 is usually ignored because It just shifts the entire
mathematical function up or down, increasing or decreasing the final value by a constant amount, so the location of the global minimum will
not be changed if we ignore this constant

General Formulation Examples

𝑥1
2 + 𝑥2 + 7 = 0

𝑥2𝑥3 + 7𝑥1 = 0

𝑥3 + 7𝑥1 = 0
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QUBOS and Ising Models

✓ QUBOs and Ising Models are almost the same thing. Their main difference is that, for each one of the binary values that take part in the
QUBO, the binary value can be either 1 or -1 in the case of Ising models (mostly used by physicists), or 0 or 1 in the case of QUBOs
(mostly used by computer scientists and mathematicians)

✓ We will use QUBOs and Ising models as our objective functions

✓ QUBOs can also be expressed as an upper diagonal matrix 𝑄 of size 𝑁𝑥𝑁 (being 𝑁 the number of variables), where the diagonal terms 
𝑎𝑖  = 𝑎𝑖,𝑖= 𝑄𝑖,𝑖 refers to the linear coefficients, and the nonzero off diagonal terms 𝑏𝑖,𝑗 = 𝑄𝑖,𝑗 are the quadratic coefficients 

✓ We can transform the previous expression into a more concise form

Where: 
• 𝑄 refers to the matrix previously described 
• 𝑥 is a column vector of size 𝑁 that contains the variables 𝑥𝑖whose values we want to get 
• 𝑥𝑇 is just its transposed version to a row vector
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QUBO vs Ising Models

Ising and QUBO models are isomorphic. We can prove it by considering the expression for an Ising model, and converting it to a QUBO model 
by transforming the original variables 𝑠𝑖 ∈−1,1 into 𝑥𝑖 ∈ 0,1 arriving at the expression for a QUBO model
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DADK Introduction

Let's code!
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Knapsack Problem
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Knapsack Problems

Knapsack problems are a particular type of problems within the field of combinatorial optimization. Given a set of items, each with a specific
weight and profit we must choose which ones should be taken in a knapsack of a particular capacity without exceeding it, and while maximizing
the total profit of the items taken.

✓ The weight, any metric that limits the maximum items we can carry or pick. We may be considering as
weight the available budget that we can spend, or the total volume or actual physical weight of the
items that we can carry, or the time required for a task if we are considering a scheduling problem. The
weight takes a specific value for each item and does not vary depending on which other items we pick.

✓ The profit, any metric that represents the benefit associated to a certain item. We could be referring to
the expected return of an investment, the number of tasks completed, or any other metric that helps us
decide which items should be dropped if we cannot take all items in our knapsack.

Source: https://en.wikipedia.org/wiki/Knapsack_problem

Definition

Uses Cases

Portfolio Optimization
The maximum weight is the
available budget, and the expected
revenue for each investment will
represent its profit.

Project Priorization/Selection
The maximum weight will be the
available time and profit will be the
revenue of each project.

https://en.wikipedia.org/wiki/Knapsack_problem
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Knapsack Problems

Source: https://en.wikipedia.org/wiki/Knapsack_problem

Knapsack problems take different mathematical forms depending on the details of each problem, but the most basic form, the 0 1 knapsack
problem looks as follows:

Where:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ෍

𝑗=0

𝑛

𝑝𝑗 ∙ 𝑥𝑗 ,  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍

𝑗=0

𝑛

𝑤𝑗𝑥𝑗 = 𝑊 

We will shape this type of problems with the following Hamiltonian, adding a constant 𝛼, which is called penalty, or Lagrange
multiplier. It helps us balance the different parts of the model.

https://en.wikipedia.org/wiki/Knapsack_problem
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Knapsack Problems
Let us consider an example of portfolio optimization, let’s assume that we have a budget of 10 000 000 EUR that we would like to invest in 𝒏
different companies, based on the expected ROI (Return On Investment) or profit for each investment opportunity.

The following changes were applied:

✓ Companies have been renamed with indices from 0 to 𝒏 − 𝟏
(being 𝑛 the number of companies). 

✓ The weight of each investment have been divided by 1,000,000, 
and the profits by 10,000, to get numbers that are easier to 
handle. 

1. To shape this problem as a QUBO model, first, the meaning of each binary variable (or binary decision in the context of this problem)
should be defined: 𝒙𝒋: Should we invest in company 𝒋 / Include item 𝒋 in our knapsack? (1: Yes, 0: No)

2. Then, define the objective of the problem: Objective: Maximize the expected profit

3. Constraint: The overall weight of the items selected should be equal to 𝑾 = 𝟏𝟎
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Knapsack Problems

Source: https://en.wikipedia.org/wiki/Knapsack_problem

1) Profit Maximization

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ෍

𝑗=0

𝑛

𝑝𝑗𝑥𝑗 = 12𝑥0 + 15𝑥1 + 8𝑥2 + 36𝑥3 + 20𝑥4 + 21𝑥5 + 30𝑥6

2) Constraint

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ෍

𝑗=0

𝑛

𝑤𝑗𝑥𝑗 = 𝑥0 + 3𝑥1 + 2𝑥2 + 6𝑥3 + 5𝑥4 + 3𝑥5 + 2𝑥6 = 10 = 𝑊

We can now put everything together by adding both Hamiltonians and including the Lagrange multiplier, and making sure that the 
resulting expression meets the shape of a binary knapsack problem:

https://en.wikipedia.org/wiki/Knapsack_problem
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Knapsack Problems

Let's code!
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Problem Formulation
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Problem Formulation

Write down the Objective and the Constraints of the problem, in your domain business: 

Definition

1. Variables: The variables is the first thing to define.
2. Objective: What we are looking to minimize or maximize. Common cases involve a measurable metric that we would like to 

maximize or minimize.
3. Constraint: Business rule that must be followed, that prevents some solutions from being acceptable or valid.
4. Transformation: Reformulate the problem for being compatible with QUBO formulation.
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Problem Formulation

Removing squared terms

• QUBO models do not have squared variables

Maximization to minimization

• Sometimes, the problem will present itself as a maximization problem (for
example, maximizing revenues).

• The QPU will look for the ground state, so it is best suited for minimization
Problems.

• In these cases, we can just convert the entire expression to a minimization
problem by multiplying it by -1

Equality to Minimization

• In case we have a constraint based on an equality, we can convert it to a
minimization expression by moving all terms to the same side of the
equation and squaring the nonzero side of the equation.

• This way, we will ensure that the expression is satisfied on a minimal value
of 0 and unsatisfied on any greater value greater than 0.
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Problem Formulation

Inequality to Minimization

Let us consider the following inequalities obtained when trying to model a problem as a QUBO

These situations are very common when working with constraints, that put an upper or a lower limit on some aspects of our solutions. How 
can we convert this inequalities to a minimization problem? 

• If we just convert the ≤ sign to = we would be limiting the model to solutions with a total value equal to 𝑚. 

• To add some flexibility, we will be adding slack variables, auxiliary variables whose final value will not be relevant (in fact, it is usually 
ignored) but help the model consider other solutions 

• The new equation would look something like this, being 𝑆 the slack variable

• We will use slack variables to allow the QPU or simulator to use them if needed, to set either a value of 0 or 1 in any of them to
accommodate the expression and meet the requirement set by the constraint

෍

𝑖=0

𝑛

𝑎𝑖𝑣𝑖 − 𝑚 ≤ 0 ෍

𝑖=0

𝑛

𝑎𝑖𝑣𝑖 − 𝑚 + 𝑆

2

= 0 ෍

𝑖=0

𝑛

𝑎𝑖𝑣𝑖 − 𝑚 ≥ 0 ෍

𝑖=0

𝑛

𝑎𝑖𝑣𝑖 − 𝑚 − 𝑆

2

= 0
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Problem Formulation

Inequality to Minimization

• We will use binary expansion on 𝑺. 

• We should start by determining the minimum value that the S value has to compensate, and then, the maximum value that 𝑆 may need 
to reach to compensate the expression, and how many slack variables will be needed to make that possible:

• The minimum value in this example will be 0
• The maximum value will be m

• We should look for the power of 2 equal to the maximum value of 𝑺 obtained earlier. This will help us identify how many binary variables 
will be required 

෍

𝑖=0

𝑛

𝑎𝑖𝑣𝑖 − 𝑚 ≤ 0 ෍

𝑖=0

𝑛

𝑎𝑖𝑣𝑖 − 𝑚 + 𝑆

2

= 0

• Therefore, the final equation would look as follows just for our example the number of slack variables and their coefficients will 
vary from case to case:
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Problem Formulation

Inequality to Minimization

Summary

1. Less Than or Equal To inequality can be summarized as follows

2. Greater Than or Equal To we will apply the same strategy, modifying just some aspects of the operation
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Problem Formulation 

Let's code!
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Bonus: Graph Coloring
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Graph Coloring

✓ Graph coloring is a classical NP-hard problem from graph theory

✓ Goal: assign colors to the nodes of a graph such that adjacent nodes are assigned different colors

✓ It has a wide range of applications such as scheduling, register allocation, designing seating plans,
Frequency Assignment , etc.
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Graph Coloring

Constraints

Each vertex is assigned one color only

෍

𝑘=0

𝐾−1

𝑥𝑛,𝑘 = 1 , ∀𝑛

Adjacent edges can’t have same color

𝑔𝑖𝑣𝑒𝑛 𝑒𝑑𝑔𝑒 𝑛, 𝑚 ∈ 𝐸, 𝑥𝑛,𝑘 = 0 𝑜𝑟 𝑥𝑚,𝑘 = 0, ∀𝑘

✓ Formally: given a graph 𝐺 = (𝑁, 𝐸), and a set of 𝑘 different colors 𝐶, assign a mapping 𝑓: 𝑉 → 𝐶

such that 𝑓 𝑣𝑖 = 𝑓(𝑣𝑗) if and only if 𝑣𝑖 , 𝑣𝑗 ∉ 𝐸

✓ Variable 𝑥𝑛,𝑘 = 1 if vertex n is colored with color labelled as k
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Graph Coloring

✓ Formally: given a graph 𝐺 = (𝑁, 𝐸), and a set of 𝑘 different colors 𝐶, assign a mapping 𝑓: 𝑉 → 𝐶

such that 𝑓 𝑣𝑖 = 𝑓(𝑣𝑗) if and only if 𝑣𝑖 , 𝑣𝑗 ∉ 𝐸

✓ Variable 𝑥𝑛,𝑘 = 1 if vertex n is colored with color labelled as k

Constraints

Each vertex is assigned one color only

෍

𝑘=0

𝐾−1

𝑥𝑛,𝑘 = 1 , ∀𝑛

Adjacent edges can’t have same color

𝑔𝑖𝑣𝑒𝑛 𝑒𝑑𝑔𝑒 𝑛, 𝑚 ∈ 𝐸, 𝑥𝑛,𝑘 = 0 𝑜𝑟 𝑥𝑚,𝑘 = 0, ∀𝑘

෍

𝑛=0

𝑁−1

1 − ෍

𝑘=0

𝐾−1

𝑥𝑛,𝑘

2

෍

𝑛,𝑚 ∈𝐸

෍

𝑘=0

𝐾−1

𝑥𝑛,𝑘𝑥𝑚,𝑘
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Graph Coloring

✓ Formally: given a graph 𝐺 = (𝑁, 𝑉), and a set of 𝑘 different colors 𝐶, assign a mapping 𝑓: 𝑉 → 𝐶

such that 𝑓 𝑣𝑖 = 𝑓(𝑣𝑗) if and only if 𝑣𝑖 , 𝑣𝑗 ∉ 𝑉

✓ Variable 𝑥𝑛,𝑘 = 1 if vertex n is colored with color labelled as k

QUBO

𝐻 = 𝛼 ෍

𝑛=0

𝑁−1

1 − ෍

𝑘=0

𝐾−1

𝑥𝑛,𝑘

2

+ 𝛽 ෍

𝑛,𝑚 ∈𝐸

෍

𝑘=0

𝐾−1

𝑥𝑛,𝑘𝑥𝑚,𝑘
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Graph Coloring

Let's Code!
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Thank you 
very much!
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