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High Brightness Muon Beams @
AR

= Production of high brightness muon beams requires
= Powerful proton source
= Pion production and capture
= Beam handling and cooling
= Review activities in context of:
" Plans for ISIS upgrades
" Plans for Muon Collider
= Focus on technology R&D aspects
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= |SIS

= Most powerful pulsed
: : Neutron and
spallation source in Muonas
Europe

= Neutrons for neutron
scattering

= Short pulse muon beams
(mainly) for muSR

= Growing interest in

upgrade

= European neutron (e
drought, even with ESS e

= MuSR lines

oversubscribed
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ISIS Upgrades Pt
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RCS option
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= Three possible upgrade paths under investigation
= Rapid Cycling Synchrotron (RCS, e.qg. JPARC, Fermilab)
= Linac + accumulator ring (AR, e.g. SNS)
" Fixed field alternating gradient accelerator
|

Aim for O(MW) pulsed beams



ISIS Upgrade Options %;

RCS and AR attractive Single Particle Tunes (RCS)
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'! ISIS Upgrades - FFA Test R
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Design effort focused on test ring

= Demonstrate high intensity operation

= Control of tune

= Charge exchange injection & phase space painting
= Longitudinal dynamics
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Stacking @

International
UON Collider
Collaboration

= Few fundamental limits to proton current e.qg.
= Foil heating
= Target heating
= Space charge at injection

= |nject at low energy, stack at high energy

= — reduce drastically space charge at injection
D Kelliher
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FFA Magnet modelling
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Opera Model

= 3D magnet model developed
= Trims enable choice of field profile across the magnet
= Ensure correct focusing ‘k-value’ for the entire magnet

= Plan to build prototype 2025
% ISIS 8



Low frequency RF

Ferrite

= 8 4M2 blocks arrived December 2022.

= |nitial tests confirm Q~100.

= Bias winding requires 2800 Amp turns

to achieve frequency sweep.

MA core

= |nitial impedance measurements of
Magdev 1K107 and Hitachi FT3L cores

have been made.

High voltage tests of both Ferrite and MA
underway

MagDev 1K107 Core Measurements
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Muon Collider @
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= Muon collider -» potential short
cut to the energy frontier

= Multi-TeV collisions in next
generation facility

= Combine precision
potential of ete  with .
discovery potential of pp R ;

Accelerator

Muon Collider
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= High-flux, TeV-scale e i o
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& BSM physics
= High-flux, precision muon

Muons/bunch N 1012 2.2
beams at low energy Repetition rate 2 Iz 5
Beam power Pe.on MW 5.3
RMS longitudinal emittance €l eVs 0.025
Norm. RMS transverse emittance £l um 25
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R. Franqueira-Xemines et al, CERN

MuC Target

= Protons on target = pions - muons
= Graphite target takes proton beam to produce pions

= Back up options under investigation
= Heavily shielded, very high field solenoid captures n* and 1t -

= Challenge: Solid target and windows lifetime
= Challenge: Energy deposition and shielding of solenoid
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Magnet options
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= |nvestigating force-flow cooled HTS cable
= QOperation at 20 K -» more efficient cryo plant
= Smaller footprint and stored energy than LTS
= Also strong synergy with
= Fusion
= UHF Magnets for science
= Radiation hardness under study
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Fluidised Tungsten Target
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C. Densham, STFC

p—

Lean phase gas lift

Example gravity fed
granular flow heat
exchanger

P+=

HEE

= |Looking at fluidised Tungsten bed as possible target
material
= Alleviates many of the challenges surrounding fixed targets

"= Promising also as a neutron spallation target
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lonisation Cooling %>

RF| 75— MUONS

= Beam loses energy in absorbing material
= Absorber removes momentum in all directions
= RF cavity replaces momentum only in longitudinal direction
* End up with beam that is more parallel

= Multiple Coulomb scattering from nucleus ruins the effect
= Mitigate with tight focussing — low 3
= Mitigate with low-Z materials
= Equilibrium emittance where MCS cancels the cooling

= Verified by the Muon lonisation Cooling Experiment (MICE)
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Muon Cooling
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LH, wedge 325 MHz coils
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Cooling Demonstrator
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Upstream Instrumentation 5
and Matching ownstream
Instrumentation

== High-intensity high-energy pion source

Target Collimation and
phase rotation
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Comparison with Existing Data ﬂ@b
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Upstream Instrumentation :
and Matching Inséumentaion
-ﬂ.\:_ == High-intensity high-energy pion source

Target Collimation and
phase rotation

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single patrticle Bunched beam
Instrumentation HEP-style Multiparticle-style

& Science & Technology Facilities Council



Preliminary Cooling Cell Concept
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Cooling System
Cell length 2m
Peak solenoid field on-axis 72T
Dipole field 02T
Dipole length 0.1m
RF real estate gradient 22MV/m
RF nominal phase 20°
RF frequency 704 MHz
Wedge thickness on-axis 0.0342 m
Wedge apex angle 5°
Wedge material LiH
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! Optics vs momentum @
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= Acceptance driven by tune consideration

* Tune = number of focusing oscillations per magnetic cell
= Acceptance for tune near to resonances
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= B-fields reduce RF Safe
Operating Gradient (SOG)

= e emitted from copper
= B-field focuses on far wall
" Induces sparks
= Muon cooling needs high
RF gradient + B-field
= Two routes demonstrated

= Either: Beryllium window
resistant to damage

= Or: High-pressure gas
absorbs spark
= Otherideas

= Operate at IN2
temperature

= Short RF pulse to limit
heating

ke

Integration issue: RF
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Window
material B-field (T) SOG (MV/m)
Cu 0 2444+ 0.7
Cu 3 129 + 0.4
Be 0 41.1 £2.1
Be 3 > 498 4+ 2.5
Be/Cu 0 439 £0.5
Be/Cu 3 10.1 £ 0.1
Bowring et al
Pressure (psia) at T=293K
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CuData: max gradient 49.9 MV/m L
High pressure gas

Mo Data: max gradient 63.8 MV/m

Be Data: max gradient 52.3 MV/m

Mo Data: max gradient 65.5 MV/m at B=¥1
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Be RF & LiH Performance @
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= Use Beryllium for RF cavity
walls

= Use LiH in absorber

= Good cooling performance 397

= Transverse and E
longitudinal emittance E
reduced by ~ 20 %

= Approx factor two
reduction in 6D emittance

3.5 1

2.0+

1.5 A

= QOptimisation ongoing ; o % B B 0
. z[m]
- ,fb\ssumes perfect matching Transmission losses 2.00%
or now Decay losses 4.00%
= Assume LiH for now Trans € in 1.95 mm
= Liquid Hydrogen Trans € out 1.57 mm
performance likely better Long € in 3.61 mm
Long € out 2.99 mm

& Science&Technology6D €in 12.7 mm?
< |SIS 6D £ out 6.3 mm?



Timeline

Source and
collider complex

Demonstrator

Coaoling

Hardware
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Technically limited timeline
Initial design
Facility Conceptual
Des‘g Fi
Technical
Design

E E Facility Construction
Dermonstrator g E
design = 2
= =
Preparatory | o =
work § §
Prototypes | — | Demenstrator e
E Construch on =

& & |Demonstrator exploitation and upgrades
it i
Design and
modelling
rofo g
Pre-series
Production
Cost and Performance Ready fo Ready to Ready to
Estimation Commit Construct Operate
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= Assumes full effort of major lab e.g. CERN, Fermilab
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= Very exciting time for high brightness muon beam R&D

= Too much material to cover!
= High power protons, including FFA R&D
" Pion and muon production targets
= Muon cooling studies
= | ook forwards to further collaborations with US
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