PTOLEMY: Unraveling the Cosmology of Relic Neutrinos

Chris Tully on Behalf of PTOLEMY Collaboration Princeton University

BiCoQ Research Seminar MILANO-BICOCCA, MILANO, ITALY DECEMBER 14, 2023

Research supported by

John Templeton Foundation

Scale-Invariant Power Spectrum

Cosmic microwave background

First v's?

Quantum Geometry Matter/Radiation

End of Inflation

Inflation

Pre-inflation

First Neutrinos in the Universe

Sphaleron corresponds to an unstable configuration of fields, which, after a small perturbation, decays to the vacuum by emission of many particles.

Higgs Vacuum Bubbles

Imagine that regions with non-zero <vev> cause Spacetime to grow rapidly overtaking the space with zero <vev>: Like gas bubbles in boiling water

- A *minimum* of 3 mass generations needed to have *CP* violating phases in the mass matrices
- Sphaleron process **not** suppressed by m_W outside of Higgs vacuum bubbles

https://cerncourier.com/a/electroweak-baryogenesis/

Or Second-Order Phase Transition?

Cosmic Neutrino Background

Cosmic Neutrino Background Number density: $n_v = 112/cm^3$ Time (units of seconds) POSSIBLE THERMAL HISTORY OF THE POSSIBLE THERMAL

Dicke, Peebles^{*}, Roll, Wilkinson (1965) <u>Cosmology's Century (2020)</u>
<u>LAMES PEEBLES^{*}
NOBEL PRIZE IN PHYSICS 2019</u>

Time of decoupling: $t_v \sim 1.95K$ Time of decoupling: $t_v \sim 1$ second ~50% of the Total Energy Density of the Universe neutron/proton ratio @start of nucleosynthesis Velocity distribution:

> Non-linear distortions Villaescusa-Navarro et al (2013)

6

T,, /m,,

Our Biggest Fan

December 7, 2023

FRS145: Big Bang Cosmology From the Ground Up

Nucleosynthesis Chain

Protons/Neutrons scrambled until the temperature drops below ~0.7 MeV

Neutrons decay with a lifetime of 888 sec

Weak interactions:

$$n \leftrightarrow p + e^{-} + \overline{v}$$

 $v + n \leftrightarrow p + e^{-}$
 $e^{+} + n \leftrightarrow p + \overline{v}$

 $n_{\gamma} >> n_{B}$

Photodissociation of Deuterium slows down at temperatures below ~0.08 MeV at roughly 120 seconds into BBN

BBN Predictions

Superposition of Sound Waves

https://www.cosmos.esa.int/documents

Cosmic Tightrope

We can ask, how close to $\Omega = 1$ did the Universe need to be in order for Spacetime to be flat today?

Answer: The tiny dark energy density (assuming it is a constant) that was completely negligible in the early Universe had to be so accurately accounted for at the end of inflation $\Omega = 1$ that it would be precisely 69% of the total critical density today.

Initial condition

How about the energy density from neutrino mass?

Flatness Problem

Cosmic Elements

J. Lesgourgues

Individual neutrino contributions assuming Normal Hierarchy and $m_3 = 0.05 \text{ eV},$ $m_2 = 0.009 \text{ eV},$ $m_1 = 0$

At least 1% Ω_{baryon}

Saved by the bell?

Present Universe $\Omega = 1$

Neutrino Sky Modeling

Fabian Zimmer, Camila A. Correa, Shin'ichiro Ando Influence of local structure on relic neutrino abundances and anisotropies

https://arxiv.org/abs/2306.16444

Willem Elbers, Carlos S. Frenk, Adrian Jenkins, Baojiu Li, Silvia Pascoli, Jens Jasche, Guilhem Lavaux, Volker Springel Where shadows lie: reconstruction of anisotropies in the neutrino sky https://arxiv.org/abs/2307.03191

http://arxiv.org/abs/2103.01274First citation came from Jim Peebles16Tully, Zhang,https://iopscience.iop.org/article/10.1088/1475-7516/2021/06/05316"Multi-Messenger Astrophysics with the Cosmic Neutrino Background", JCAP 06 (2021) 053

Non-Standard Thermal History: Re-thermalization of Neutrinos in the ΛCDM Desert

Daniel Aloni, Melissa Joseph, Martin Schmaltz, Neal Weiner Dark Radiation from Neutrino Mixing after Big Bang Nucleosynthesis

https://arxiv.org/abs/2301.10792

What if the post-BBN history of relic neutrinos are not as we expect and neutrinos have a non-trivial influence on the dark sector?

This would change how many we would detect today.

Cosmic Neutrino Background

- Neutrinos have been measured for more than 60 years.
- Previous methods
 have energy
 thresholds in ~MeV
 for charged and
 neutral current
 scattering or capture
 on Gallium, Chlorine,
 etc.

Cosmic Neutrino Background

- The CNB is shown for a minimal mass spectrum here for 0, 8.6, and 50 meV, producing a blackbody spectrum plus two monochromatic lines for nonrelativistic neutrinos with energies corresponding to their masses.
- Detection requires a reaction with no threshold.

Detecting sub-eV Neutrinos

Neutrino capture on Tritium

Detecting CNB Using Capture on Tritium

- Steven Weinberg laid out basic concepts for CNB detection in 1962
- Cocco, Mangano, Messina applied to massive neutrinos in 2007

 $^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \overline{\nu_{e}}$ $^{3}\text{H} + \nu_{e} \rightarrow ^{3}\text{He} + e^{-}$

Detection Concept: Neutrino Capture

Idea for relic neutrino detection originated in a paper by Steven Weinberg in **1962** [*Phys. Rev.* 128:3, 1457] applied for the first time to massive neutrinos in **2007** by Cocco, Mangano, Messina [DOI: 10.1088/1475-7516/2007/06/015]

PTOLEMY Conceptual Block Diagram

RF Tracker:

Electron Pre-

Measurement

Target: Relic Neutrino Capture Dynamic Filter: Selects endpoint electron in narrow 10⁻⁴ energy window

Micro-calorimeter: Measures few eV electron to 10⁻² energy resolution

https://ptolemy.lngs.infn.it

PTOLEMY Conceptual Block Diagram

Target: Relic Neutrino Capture Micro-calorimeter: Measures few eV electron to 10⁻² energy resolution

Tritium-loaded Graphene

>90% Loading Achieved (using ¹H) World Record effort led by PTOLEMY researchers

Mahmoud Mohamed Saad Abdelnabi et al 2021 Nanotechnology 32 035707

Mahmoud Mohamed Saad Abdelnabi et al Nanomaterials 2021, 11(1), 130

Parma, Italy Now at La Sapienza Tritium Laboratory Karlsruhe (TLK) recently demonstrated tritium-loading on Graphene

https://arxiv.org/abs/2310.16645

NEUTRINO MASS

$$n \rightarrow p + e^- + \overline{v_e}$$

26

The electron spectrum depends parametrically on the neutrino mass:

The effect is much stronger near the end-point

Measure the near end-point spectrum

Fit the neutrino mass

INFN

SAPIENZA

Angelo Esposito

 $\frac{dN_{\beta}}{dK} \equiv f(K_{e}; m_{v})$

Tritium-loaded Graphene Endpoint Spectra

- sensitivity estimate for "bare" Tritium spectrum (i.e. in vacuum decay)
- effect on sensitivity of Heisenberg ZPF in the initial state for free ³He⁺ decay
- **TODO**: sensitivity from analysis of end-points of bound ³He⁺ decays

A. Esposito/A.Casale

Potential New Paradigm to Neutrino Mass Measurement

- sensitivity estimate for "bare" Tritium spectrum (i.e. in vacuum decay)
- effect on sensitivity of Heisenberg ZPF in the initial state for free ³He⁺ decay
- **TODO**: sensitivity from analysis of end-points of bound ³He⁺ decays

A. Esposito/A.Casale

A. Nucciotti

Intrinsic Absolute Energy Scale Endpoint Calibration from Condensed Matter System

Newly Fabricated TES Micro-Calorimeters

Micro-Calorimeter Calibration

New Design: Mozzarella in Carrozza (MiC) Gun

✓ **Sapphire** spacers

Torino, Italy

✓ **Improved** mechanical stability

Francesco and Carlo

PTOLEMY Princeton Meeting, 06.11.23

Installing MiC Gun Inside INRiM Cryostat

Roma Tre

Field Emission

. .

Workfunction

Vacuum

Can reach 30 mK in only 18 hours!

PTOLEMY Princeton Meeting, 06.11.23

12

30

Francesco and Carlo

Classic Velocity Selector

Is this the only way to select velocity?

PTOLEMY Filter Concept

Auke Pieter Colijn (PATRAS 2019)

Bingo!

Selected velocity based on cyclotron drift

New type of particle accelerator (useful for fusion reactor heating)

https://www.intechopen.com/chapters/82927

Filter R&D Development Setup

Andi Tan (Princeton)

Wonyong Chung (Princeton)

Zero field (location for TES microcalorimeter)

ASG-SupraSys Magnet @LNGS

-X

(0.65, 0)

RF Tracking of Semi-Relativistic Electrons

Recent Project 8 Tritium Measurement

RF measurement background levels extremely low.

No events observed above endpoint, Setting upper limit on background rate

< 3x10⁻¹⁰ /eV/s (90% CL)

→ < 1 event per eV in 100 years!

Great Opportunities to Learn and Collaborate with Project 8

38

RF Antenna Simulations

e-field (t=0..end(0.5)) [pw] Abs Component Sample 100/1458 49.5 ps Time Cross section Α Cutplane at Z 0.000 mm Maximum on Plane (Sample) 0.000540068 V/m Maximum (Sample) 0.000592264 V/m Maximum (Global) 0.00764982 V/m

Yuno Iwasaki

V/m 0.0025 -0.00238 -

PTOLEMY: CvB expected performance

Neutrino mass sensitivity exploiting atomic scale Graphene effects at endpoint (in progress)

Neutrinos: Unsung Heroes of the Universe

Photons 18.6%

Electrons/Positrons 32.6%

Neutrinos 48.8%

Leading role in early Universe

photon+neutrino-to-baryon ratio

Matter-(Photon+Neutrino) Equality

And in the current Universe

Solar cooling/Supernovae

And potentially much more in the dark sector (???)

Neutrino Decoupling (t=1 second)

41

PTOLEMY Workshop @Princeton/NYU

Princeton University December 7, 2023

ADDITIONAL SLIDES

Polarized Tritium Target

Lisanti, Safdi, CGT, 2014. <u>10.1103/PhysRevD.90.073006</u> Akhmedov, 2019. <u>10.1088/1475-7516/2019/09/031</u>

Point at the Sky with Tritium Nuclear Spin 1 Detection (capture) of cold neutrinos: dσ/dcosθ (v/c) ~ (1+cosθ)

Hydrogen doping on graphene reveals magnetism

Gonzalez-Herrero, H. *et al.* Atomic-scale control of graphene magnetism by using hydrogen atoms. *Science (80).* **352,** 437–441 (2016).

New Ideas for Enhancing RF Detection

Small cavity: Longitudinal reconstruction

Ň

Electrostatic Electron Analyser: another approach to high resolution measurement

	Phoibos 225	Phoibos 100	EW-4000
Mean radius (mm)	225	100	200
Detector type	2D DLD	2D DLD	2D DLD
Pass energy (eV)	Up to 500	Up to 500	Up to 500
Energy window	9% of P.E.	20% of P.E.	
Resolution	< 1meV	< 3 meV	< 2 meV
Acceptance angle	±15°	±15°	±30°

6

First High Capacity Target Designs

Large Total Area Tritium-Loaded Surfaces

