

Future colliders: physics motivations

CERN Summer Student Lecture Programme

F. Richard LAL/Orsay

Introduction

- There is a wide consensus that lepton colliders are indispensable tools for HEP, in complement to hadron colliders, and that the next facility should be a e+e- linear collider
- For more than 10 years a worldwide R&D effort took place to provide a valid project for a e+e- LC
- LHC (after Tevatron) is exploring BSM physics and should give us the critical inputs to decide on the parameters of a future lepton collider
- While the SM is our solid baseline there exist a variety of scenarios with contrasted consequences on the choice of parameters for a future LC
- Europe will have a strategy discussion on the future of HEP during next year

The standard view BSM

- From LEP/SLC/TeVatron compelling arguments (precision measurements PM) to expect a light Higgs <150 GeV within SM or most of its SUSY extension (MSSM)
- A LC is ideal to study the properties of a light Higgs
- MSSM passes remarkably PM offering full calculability
- In particular it allows to extrapolate the weak/em/strong couplings to an unification scale without very large quantum corrections to the Higgs mass
- It is fair to say that the model is not predictive on flavours in particular fermion masses hierarchies and CP violation
- A basic input to decide the energy of a LC is missing: what are the masses of the colorless SUSY particles (charginos, neutralinos, sleptons) best studied at LC?

Alternates

- Other views have emerged allowing for very different pictures: Composite Higgs and even Higgsless
- □ They often are linked to extra dimensions
- Eminent role of top physics in this view: it could also be composite like the Higgs
- These models also predict large deviation in W_LW_L couplings which can be precisely studied in e+e-
- In the language of extra dimensions Kaluza Klein bosons couple preferentially to Higgs, top quarks and W_LW_L generating large deviations in couplings to Z boson
- A LC measuring top, Higgs and WW couplings with excellent accuracies is ideally well suited to observe these effects

Major differences LHC/LC

- □ LC with a well defined initial state and energy gives precise masses e.g. Z/W at LEP (also true for sparticles)
- □ LC has polarised electrons essential to test SU(2)L⊕U(1) see SLC vs LEP
- □ Accurate **luminosity** + absence of trigger allows very clean unbiased determination of cross sections with accuracies well below 1%
- □ In a hadron machine with PDF+QCD corrections
 (CLs/Clem) accuracies ~10%

Democratic Production

- All processes have similar cross section
- HZ the 'gold plated' process comes out very cleanly and allows to measure Higgs BR at %
- □ For comparison this channel has s/b~1/1000 at TeVatron
- Top quarks are reconstructed with low background
- Charginos can be studied in great detail

ee->Z*->HZ

- □ The recoil mass technique with Z->µ+µ- gives a very clean & robust signal
- Works even if H decays into invisible or complex modes
- □ ZZH coupling constant determined to 1%
- □ In the SM case most BR ratios known 10 times more precisely than at LHC

Why so precise?

Deviations on SM widths for Mh=140 GeV

G. Giudice et al hep-ph/0703164

Top physics

- LC 1 pb, LHC 1nb but dominated by gluon-gluon
- Very good s/b at ILC and energy/momentum conservation allows to reconstruct modes with a neutrino
- \square Mt and Γ t with ~50 MeV error, 0.4% on cross section
- LC unique to measure tR and tL Z couplings at % (ND>4) using polarization (LHC > 10 times worse)

Dark matter & SUSY

- □ Is possible to reach sufficient accuracy on the predicted dark matter to match cosmological observations?
- LC provides the best accuracy
- Do they coincide ?

How to go from LEP/SLC to the next LC

- ☐ It is not possible to use **circular machines** (LEP) due to SR
- ☐ SLC luminosity needs a 10000 increase
- Use very intense beams with focussing 1000 smaller than SLC (improving emittance)
- Requires large damping rings (multi-bunch)
- Large power needed in such machines -> crucial is η=Beampower/Plug power
- Bunch separation is an issue for detectors
- Standard way like SLC: warm cavities, klystron+ modulators with low η
- □ Two other ways:
- □ ILC supraconductive (2º Kelvin) linac allowing long bunch with good bunch separation but moderate gradient
- □ CLIC a two beam accelerator with higher gradient but <ns bunch separation F. Richard August 2011

CLIC Power Source Concept

13

Some parameters

Type	LEP200	SLC100	ILC500	CLIC500
Vertical size nm	4000	700	5.7	2.3
Total P MW	65	50	216	240
Wall plug transf η %			9.4	4.1
Luminosity $10^{31} \text{cm}^{-2} \text{s}^{-1}$	5	0.2	1500	1400
Interval between	>>>	>>>	738	0.5
bunches ns				
Polarisation %	No	80	>80	>80
Gradient MV/m	8	17	31.5	80

- □ ILC and CLIC intend to start at 500 GeV
- ILC is upgradable, with present technology, at 1 TeV
- \square CLIC could reach 3 TeV but with 560 MW ~constant luminosity (same δE)

CLIC/ILC

- ☐ Higher **gradient** at CLIC -> shorter machine reaching higher energies: 13 km instead of 30 km at 500 GeV
- CLIC has tight requirements on alignment due to wake fields (frequency x10) and beam size at IP
- CLIC is demonstrating its feasibility with the test station CTF3 (D. Schulte)
- Feasibility of ILC is based on various R&D efforts and test stations in the 3 regions in particular XFEL at DESY using the same technology
- Both machines have in common several critical R&Ds (damping rings, beam delivery, generation of positrons etc...)
- Both machines need to be able to run at low energy to allow for energy scans at threshods (HZ,tt,SUSY particles)

Detectors for LC

- ☐ Improved performances /LEP/LHC
- Open trigger with no bias on new physics
- Higher quality of b/c tagging (factor 10)
- Reconstruct separately charged and neutral particles (PFLOW) possible with high granularity calorimeters
- These detectors are challenging: need to reconstruct complex final states with multijets: ttH has 8 jets
 - -> full solid angle coverage essential
- A major difference with LEP: only one detector can take data at a given time
 - -> concept of push-pull

ILD & SiD

- Two detector concepts, SiD and ILD, have been selected by an international panel
- □ These detectors have demonstrated their ability to perform LC physics at 500 GeV
- There is an intense ongoing R&D effort (1000 engineers and physicists) to reach a realistic design and costing by end of 2012
- The same concepts, with appropriate changes in size, are tested for CLIC and 1st indications are very promising

Where are we?

- □ ILC is developed internationally after a choice of technology by an international panel ITRP 2004
- □ A TDR is expected in 2012 for the machine
- ☐ CLIC will produce a CDR by end of 2011
- □ ILC relies on a well proven technology used to build an XFEL in DESY but with higher gradients ~+25% (underway)
- □ A detailed baseline design for detectors with interfacing to the machine will be completed by end 2012
- ILC has few options: Gigaz (which requires polarised positrons to cope with the accuracies) and a γγ collider

Where do we go?

- Initial view was that we need a LC irrespective of LHC results since LC is optimal for a light Higgs
- □ 500 GeV sufficient (Higgs+top+WW physics)
- Time has past, our ideas have evolved on what could be BSM (composite, noHiggs, heavy Higgs)
- Present idea:
 - Wait for LHC (and Tevatron) results to decide
 - Be ready in 2012 (on all essential aspects) to propose a project to the funding authorities

What happens at LHC?

The New York Times

- □ LHC has gathered >1 fb-1 at 7 TeV
- LHC should soon provide an essential answer: Is there a light Higgs <150 GeV as predicted by SM (and SUSY extensions)
- First indications from LHC at HEP 2011, Mh~140 GeV
- ☐ Encouraging to go for a 500 GeV LC
- □ So far there are no other indications but rather severe limits on SUSY, Z'/W' but this is based on small statistics 1fb-1/3000fb-1

HEP strategy

- Connect CLIC and ILC efforts to avoid duplication and potentially damaging competition
- Prepare for major challenges: technical (industrialisation 16000 SC cavities), financial (~6 B\$), political with a worldwide machine (LHC different, ~ITER ?) OCDE, ESFRI
- ILC and CLIC projects intend to address these problems
- Present uncertainties justify an open scenario
- A major discussion will take place in 2012 to update the European strategy in HEP

Apologies

- Other projects are also on the print board
- Doubling the energy of LHC (>2030) with an aggressive R&D on SC dipoles
- □ LHeC to send electrons on protons from LHC (following HERA at DESY)
- MultiteV µ-collider revived at Fermilab in conjuction to the neutrino beam program
- Laser and beam plasma acceleration
 > 1 GV/m progressing fast but with limited η

In conclusion

- The HEP community has developped a consistent and worldwide strategy to construct an e+e- LC
- A viable project, ILC, can be presented to the governments end of 2012
- A final decision (ILC/CLIC) will depend on technology and physics results from LHC
- □ Watch for the European strategy discussion in 2012
- Watch for LHC results

BACK UP SLIDES

CLIC main parameters

Centre-of-mass energy	500 GeV	3 TeV			
Total (Peak 1%) luminosity	2.3(1.4)·10 ³⁴	5.9(2.0)·10 ³⁴			
Total site length (km)	13.0	48.3			
Loaded accel. gradient (MV/m)	80	100			
Main linac RF frequency (GHz)	12				
Beam power/beam (MW)	4.9	14			
Bunch charge (10 ⁹ e+/-)	6.8	3.72			
Bunch separation (ns)	0.5				
Beam pulse duration (ns)	177	156			
Repetition rate (Hz)	50				
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	4.8/25	0.66/20			
Hor./vert. IP beam size (nm)	202 / 2.3	40 / 1			
Hadronic events/crossing at IP	0.19	2.7			
Coherent pairs at IP	100	3.8 108			
Wall plug to beam transfer eff	4.1% 5.0%				
Total power consumption (MW)	240	560			

ILC parameters

	Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	upgrade 1000
	Collision rate	f_{mp}	Hz	5	5	5	5	5	4
	Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
	Number of bunches	n_b		1312	1312	1312	1312	1312	2625
	Electron bunch population	N.	×10 ¹⁰	2	2	2	2	2	2
	Positron bunch population	N_{+}	×10 ¹⁰	2	2	2	2	2	2
	Main Linac average gradient	G_{av}	MV/m	12.6	14.5	15.8	22.1	31.5	>31.5
	RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.3
	Electron RMS energy spread	$\Delta p/p$	%	0.22	0.22	0.22	0.22	0.21	0.11
	Positron RMS energy spread	$\Delta p/p$	%	0.17	0.15	0.14	0.10	0.07	0.04
	Electron polarisation	P.	%	80	80	80	80	80	80
	Positron polarisation	P ₊	%	31	31	31	29	22	22
	IP RMS horizontal beam size	σ_{x}^{*}	nm	904	843	700	662	474	554
	IP RMS veritcal beam size	σ,*	nm	9.3	8.6	8.3	7.0	5.9	3.3
	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.47	0.54	0.71	0.86	1.49	2.70
	Fraction of luminosity in top 1%	L_{aos}/L		92.2%	89.8%	84.1%	79.3%	62.5%	63.5%
	Average energy loss	δE _{BS}		0.61%	0.78%	1.23%	1.75%	4.30%	4.86%
Using	IP RMS veritcal beam size	σ _y *	nm	6.0	5.6	5.3	4.5	3.8	2.7
Traveling	Luminosity	L	×10 ³⁴ cm ⁻² s ⁻²	0.64	0.73	0.97	1.17	2.05	3.39
Focus	Fraction of luminosity in top 1%	L_{aoi}/L		91.6%	89.0%	83.0%	77.9%	60.8%	62.3%
	Average energy loss	δE _{BS}		0.61%	0.79%	1.26%	1.78%	4.33%	4.85%

P-values at low mass

EPS 2011 Grenoble

W.Murray STFC/RAL

Specific role of WW

- \square Before W gets a mass through EWSB, W like the photon has only transverse polarizations and W_TW_T interactions are well behaved at high energies
- ☐ After EWSB, it gets a longitudinal polarization and W_LW_L gives a divergent interaction in the absence of a Higgs boson
- \square Therefore studying e+e-> W_LW_L can be of uttermost importance to investigate the EWSB mechanism
- \square Unfortunately e+e-> W_LW_L is 2 orders smaller than the uninteresting W_TW_T terms due no neutrino exchange
- ☐ Electron POLARIZATION should allow to solve this problem
- With e-R there is no neutrino exchange and W_LW_L is easy to isolate
- Clearly unique potential of lepton colliders

Role of polarisation

No coupling to e-R

LHC:

- up to ~5 TeV direct observation
- up to ~2 TeV identif.
- LC can :
- discriminate between models up to ≥ 5 TeV
- predict MZ' with a relative accuracy
- < (MZ'/10TeV)2
- < 25 % at 5 TeV

Push - Pull Detector Concept

 Vibration stability will be one of the major criteria in eventual selection of a motion system design

Inner region - reminder

Top couplings to Z in the Randall Sundrum model

Option

- Arman - Arma

- \square $\gamma\gamma$ collider
- Laser beams (eV energy) scatter onto incident electron beams ~100 GeV are transformed into photon beams carrying 80% of the electron energy
- Challenging lasers given the high repetition rate
- Laser pulses stored in cavities and re-used
- Higgs couples to two photons and can be directly produced
- $\square \gamma \gamma -> h/H/A$ while ee->Zh and HA

Set up

