

Radiation levels in the LHC during the Pb run 2023 – Point 2 and QPS rack locations

Daniel Söderström, Auriane Canesse, Giuseppe Lerner, Rubén García Alía (SY-STI-BMI, R2E/MCWG) with input from Reiner Denz (TE-MPE-EP) 11/2023

Beam overview, luminosity statistics

Using data from lpc.web.cern.ch

Delivered Luminosity 2023

IR	Luminosity (1/nb) Ions 2023	Luminosity (1/nb) Ions 2018
1	1.91	1.797
2	2.16	0.905
5	2.02	1.802
8	0.249	0.235

Compared to the 2018 ion run, the luminosity is similar in all IPs except for IP2, where it increased by 2x

QPS racks and radiation monitor layout- IR2 cells 8-10· iQPS under every main dipole

• nQPS under the B-dipoles together with iQPS

R2E effects observed in the QPS system

	Date	Time	Rack	Fault type	DCUM	Short description
1	5/10/2023	8:34:22	DYPB.B <mark>10L2</mark>	SEU	2957	nQPS DQQBS, Busbar splice protection system trigger causing circuit fast power abort
2	7/10/2023	0:24:27	DYPB.B <mark>9R2</mark>	Latch-up	3661	nQPS DQQDS RB, Symmetric quench detection system triggering causing heater firing and magnet quench; communication board failed before
3	11/10/2023	8:38:10	DYPB.B <mark>10L2</mark>	SEU	2957	nQPS DQQBS#3A, Busbar splice protection system trigger causing circuit fast power abort
4	12/10/2023	13:40:05	DYPB.B <mark>9L2</mark>	SEU	2997	nQPS DQQBS RQD, Busbar splice protection system trigger causing circuit fast power abort during ramp down after operator dump
5	13/10/2023	22:45:48	DYPB.B <mark>12R2</mark>	Latch-up	3792	nQPS DQQDS RB, Symmetric quench detection system triggering causing heater firing and magnet quench; communication board failed before
6	14/10/2023	20:52:09	DYPQ. <mark>12L2</mark>	Latch-up?	2886	iQPS MQ.11L2 nDQQDL, Quench detection system trigger causing heater firing and magnet quench
7	15/10/2023	7:57:08	DYPB.B <mark>12R1</mark>	SEU	460	nQPS DQQBS, Busbar splice protection system trigger causing circuit fast power abort
8	15/10/2023	13:47:38	DYPQ.A <mark>12R2</mark>	Latch-up	3782	iQPS MQ.11R2 nDQQDL, Quench detection system trigger causing heater firing and magnet quench
9	20/10/2023	23:45:45	DYPB.B <mark>11L1</mark>	SEU	26244	nQPS DQQBS RQD, DQQBS trigger provoking FPA
10	21/10/2023	14:40:00	DYPB.A <mark>12R1</mark>	SEU	445	iQPS DQHSU, Wrong DQHDS voltage reading by DQHSU board would have caused trigger of DQHDS software and slow power abort. Programmed dump by OP before; cleared by remote power cycle
11	22/10/2023	7:58:06	DYPB.B <mark>10L2</mark>	SEU	2957	nQPS DQQBS RB, DQQBS trigger provoking FPA
12	24/10/2023	8:18:01	DYPB.B <mark>8L5</mark>	Latch-up	13034	nQPS DQAMG, Fast power abort - no quench. DQAMG to be replaced.
13	29/10/2023	13:33:50	DYPB.A <mark>10R2</mark>	SEU	3686	iQPS DQAMGNMB, COM lost - OK after power cycle

SEEs in the QPS racks as a function of luminosity

- Scaling coeficients of SEEs in the QPS racks per IR as a function of integrated luminosity in the IR
- The number of bunches and bunch trains were levelled around the "SEE storm" occurring in IR2 before 1 nb⁻¹
- (Data from LHC supertable)

Radiation levels close to QPS rack locations

Example: QPS rack DYPB.B10L2 @ dcum 2957, with three SEEs

CERN

Deported RadMon module data of half-cells 8, 9, 10

Doses measured by deported radmon modules, generally close to QPS racks, in half-cells 8, 9 and 10 left and right of points 1, 2 and 5. The number of QPS faults in these half-cells are also marked. The resulting number of SEEs per dose per half cell is similar among the time periods (low statistics).

Half-cells, SEEs	TID Pb-2023 (Gy)	TID Pb-2018 (Gy)	TID p-2023 (Gy)	TID p-2018 (Gy)
8L/R1, #SEE	- / 0.9, <mark>0</mark>	0.9 / 0.5, 1	- / ~0, <mark>0</mark>	10.5 / 6.9, <mark>5</mark>
8L/R2, #SEE	1.3 / 0.1, <mark>0</mark>	0.1 / -, 0	1.4 / ~0, <mark>0</mark>	1.1 / -, <mark>0</mark>
8L/R5, #SEE	1.1 / 0.1, <mark>1</mark>	1.0 / 0.2, <mark>0</mark>	0.1 / 0.2, <mark>0</mark>	28.9 / 9.7, <mark>4</mark>
9L/R1, #SEE	0.7 / 1.1, <mark>0</mark>	0.4 / 0.9, <mark>0</mark>	~0 / 0.1, <mark>0</mark>	4.1 / 5.1 <mark>, 2</mark>
9L/R2, #SEE	1.6 / 1.9, <mark>2</mark>	0.6 / 0.4, 1	~0 / ~0, <mark>0</mark>	~0 / ~0, <mark>0</mark>
9L/R5, #SEE	0.7 / 1.1, <mark>0</mark>	0.6 / 0.9, 1	0.5 / 0.1, <mark>0</mark>	4.3 / 6.3, <mark>2</mark>
10L/R1, #SEE	- / ~0, <mark>0</mark>			
10L/R2, #SEE	5.0 / 1.2, <mark>4</mark>	0.2 / 0.3, <mark>0</mark>	~0 / ~0, <mark>0</mark>	~0 / -, <mark>0</mark>
10L/R5, #SEE	~0 / -, <mark>0</mark>			
SEE per Gy per half-cell	6.2 (2.5, 13)	6.3 (1.3, 19)	0 (0, 24)	2.5 (1.4, 4.3)

BLM signals used for dose distribution monitoring

- Induced dose around an interaction point scales well with the integrated luminosity of that point

Instantaneous and integrated luminosity

- The delivered integral luminosity of bins of instantaneous luminosities in LHC during the ion run
- The radiation levels around the IP is proportional to the IP luminosity, so the SEEs should follow the same distribution as the integrated luminosity
- Low statistics, but no clustering of SEEs at specific instantaneous luminosity values

Left of Point 2 - Dose distribution DS, 2018 vs 2023

- Comparing the total BLM dose during the 2018 and 2023 ion and proton runs, left of IP2
- Note: the lines between the points are visual guides and do not represent real dose values.
- The dose in the DS is dominated by the ion runs
- The dose peaks shifted compared to the 2018 run, due to the new TCLD location (and the related optics change)

Integrated luminosities in IR2: Pb 2023: 2.16 nb⁻¹ Pb 2018: 0.905 nb⁻¹ (p 2023: 14.5 pb⁻¹)

Left of Point 2 - Dose distribution DS, scaled doses

- A comparison between the dose levels left of point 2 for ion runs 2018 and 2023
- Doses are normalized by the integrated luminosity in IR2

Integrated luminosities in IR2: Pb 2023: 2.16 nb⁻¹ Pb 2018: 0.905 nb⁻¹

Right of Point 2 - Dose distribution DS, 2018 vs 2023

- Comparing the total BLM dose during the 2018 and 2023 ion runs, and during the 2023 proton run, right of IP2
- Note: the lines between the points are visual guides and do not represent real dose values.
- The dose in the DS is dominated by the ion runs
- The dose peaks shifted compared to the 2018 run, due to the new TCLD location (and the related optics change)

Integrated luminosities in IR2: Pb 2023: 2.16 nb⁻¹ Pb 2018: 0.905 nb⁻¹ (p 2023: 14.5 pb⁻¹)

Ion run doses scaled by luminosity, Right of IR2

CÉRN

Left of IRs1-2-5-8 – 2023 ion BLMs

- Within the 2023 Pb run, we observe relatively higher dose in cells 9-10 in IR2 (and, partially, IR8) compared to IR1-IR5. This is reflected in a larger amount of QPS issues in cells 9-10 of IR2.
- The main dose peak is in cell 11 in IR1-IR5 (BFPP) and IR2 (TCLD) while it is in cell 12 in IR8

IR	Luminosity (1/nb)
1	1.91
2	2.16
5	2.02
8	0.249

Right of IRs1-2-5-8 – 2023 ion BLMs

- Within the 2023 Pb run, we observe
 relatively higher dose in cells 9-10 in IR2
 (and, partially, IR8) compared to IR1-IR5.
 This is reflected in a larger amount of
 QPS issues in cells 9-10 of IR2.
- The main dose peak is in cell 11 in IR1-IR5 (BFPP) and IR2 (TCLD) while it is in cell 12 in IR8

IR	Luminosity (1/nb)
1	1.91
2	2.16
5	2.02
8	0.249

QPS DAQ SEEs (input from R. Denz)

- The SEU counters from the QPS DAQ are confirming the picture outlined by BLMs and RadMons:
 - In 2023, IR2 is the region with the largest number of SEUs
 - The number of SEUs in IR2 is concentrated in cells 9, 10 and 12, where most issues have occurred

QPS DAQ SEEs (input from R. Denz)

- 2023 pattern compared to 2018
 - The 2023 ion run with most events in half cells 9,10 and 12
 - 2018 pp run dominated in 8 and 9, while the ion run saw most events in 12

- A total of 13 QPS failures attributed to R2E occurred during the 2023 ion run, with 9 in IR2
- The radiation levels on (or near) the QPS racks, as measured by the BLMs and the RadMons, are generally well correlated with the distribution of the faults
- Compatible number of QPS SEEs per radiation level between 2018 and 2023 ion and proton runs
- When comparing the 2023 ion run experience with 2018, it is important to consider that:
 - The integrated luminosities in IR1-5-8 in the two years were similar, while in IR2 the 2023 integrated luminosity is larger by more than 2x
 - \rightarrow a relative increase of IR2 SEEs can be expected
 - The radiation level profile in the tunnel in IR2 in 2023 is very different from 2018, due to the TCLD installation and the associated optics changes
- Most QPS faults in IR2 are in cells 9-10, i.e., upstream of the TCLD, with two exceptions
- The radiation level distribution measured by RadMons and BLMs is confirmed by the SEU distribution in the QPS DAQ (input from R. Denz)

Bonus slides

. ÉRN

ÉRN

ÉRN

Dose distribution around IP2

- Overview of IP2
- lon runs of 2023 and 2018 compared
- Asymmetry between the left and right sides of the IP (the highest peak of 2018 at 10L2 is for instance not as severe in 10R2)
- TID measurements from RadMons included, with the internal fg-dose (TID1) and deported module (TID2) measurements shown separately

RadMon dose measurements close to QPS racks

For most QPS racks where SEEs occurred, we have a RadMon deported module measuring TID within <10m (green racks). In other racks the RadMon is either within <20m (yellow) or not available (red) RadMons measuring HEH fluence are typically further away from the QPS racks

Rack (N _{SEE})	DCUM (m)	Closest RadMon (dcum)	RadMon HeH fluence (HeH/cm²)	Closest deported RadMon (dcum)	Deported RadMon dose (Gy)
DYPB.B11L1 (1x)	26244	26226	2.56E+11	- (26243, inactive)	- (75.3 @ 26226 m)
DYPB.A12R1 (1x)	445	432	1.03E+12	466	0.09
DYPB.B12R1 (1x)	460	487	4.91E+07	466	0.09
DYPQ.12L2 (1x)	2886	2899	1.29E+11	2871	45.3 @ 2899 m
DYPB.B10L2 (3x)	2957	2951	6.82E+09	2955	5.02
DYPB.B9L2 (1x)	2997	2991	9.80E+09	2994	1.58
DYPB.B9R2 (1x)	3661	3672	5.53E+09	3661	1.85
DYPB.A10R2 (1x)	3686	3672	5.53E+09	3700	1.23
DYPQ.A12R2 (1x)	3782	3764	1.92E+11	3799	2 mGy
DYPB.B12R2 (1x)	3792	3819	8.04E+07	3799	2 mGy
DYPB.B8L5 (1x)	13034	13030	5.62E+09	13032	1.13

RadMon dose and HEH fluence estimations

Table with further included estimated dose and HEH fluence estimations. Primarily from nearby RadMon units, secondarily from BLM dose measurements if a BLM is nearby. Dose to HEH fluence conversions if necessary have been made using a factor of 1 Gy = $3 \cdot 10^9$ cm⁻².

Rack (N _{SEE})	DCUM (m)	HeH/cm ² Pb-2023	Gy Pb-2023	HeH/cm ² p-2023	Gy p-2023	HeH/cm ² Pb-2018	Gy Pb-2018	HeH/cm ² p-2018	Gy p-2018
DYPB.B11L1 (1x)	26244	5.74E+09	1.91	4.23E+09	1.41	6.30E+09	2.10	8.43E+07	0.03
DYPB.A12R1 (1x)	445	5.59E+10	18.64	8.82E+09	2.94	7.40E+10	24.68	2.60E+10	8.66
DYPB.B12R1 (1x)	460	2.58E+08	0.09	7.94E+08	0.26	2.89E+07	0.01	1.97E+09	0.66
DYPQ.12L2 (1x)	2886	3.55E+10	11.83	1.57E+09	0.52	1.60E+09	0.53	3.30E+08	0.11
DYPB.B10L2 (3x)	2957	6.82E+09	5.02	3.66E+07	0.08	2.39E+09	0.26	5.36E+07	0.13
DYPB.B9L2 (1x)	2997	9.80E+09	1.58	4.30E+07	0.31	3.78E+09	0.61	5.55E+07	0.54
DYPB.B9R2 (1x)	3661	5.55E+09	1.85	3.34E+08	0.11	1.39E+09	0.46	5.03E+08	0.17
DYPB.A10R2 (1x)	3686	4.01E+10	13.35	2.95E+08	0.10	2.56E+10	8.55	4.02E+08	0.13
DYPQ.A12R2 (1x)	3782	3.22E+09	1.07	4.87E+08	0.16	9.20E+07	0.03	1.24E+08	0.04
DYPB.B12R2 (1x)	3792	6.64E+06	0.00	4.87E+08	0.16	8.22E+07	0.03	1.24E+08	0.04
DYPB.B8L5 (1x)	13034	5.62E+09	1.13	2.27E+08	0.06	3.13E+09	1.04	5.91E+10	28.96

RadMons closest to the DYPB.Bxxx racks

Beam overview, beam intensity statistics

Instantaneous and integrated luminosity

- The delivered integral luminosity of bins of instantaneous luminosities in LHC during the ion run
- The radiation levels around the IP is proportional to the IP luminosity, so the SEEs should follow the same distribution as the integrated luminosity
- Low statistics, but no clustering of SEEs at specific instantaneous luminosity values

Peak luminosity and integrated luminosity

- The delivered luminosity as a function of peak luminosity per LHC fill is shown
- As the peak luminosity of the fill gets larger, also the integrated luminosity of the fill increases (as would be expected)
- At high peak luminosities, the increase in delivered luminosity per fill falls of, perhaps due to the observed effects of high-luminosity fills ending prematurely

TID to HEH fluence conversion

QPS SEEs as a function of luminosity ion run 2018

Left of Point 2 - Dose distribution DS, 2018 vs 2023

- Comparing the total BLM dose during the 2018 and 2023 ion and proton runs, left of IP2
- Note: the lines between the points are visual guides and do not represent real dose values.
- The dose in the DS is dominated by the ion runs
- The dose peaks shifted compared to the 2018 run, due to the new TCLD location (and the related optics change)

Integrated luminosities in IR2: Pb 2023: 2.16 nb⁻¹ Pb 2018: 0.905 nb⁻¹ (p 2023: 14.5 pb⁻¹)

Right of Point 2 - Dose distribution DS, 2018 vs 2023

- Comparing the total BLM dose during the 2018 and 2023 ion runs, and during the 2023 proton run, right of IP2
- Note: the lines between the points are visual guides and do not represent real dose values.
- The dose in the DS is dominated by the ion runs
- The dose peaks shifted compared to the 2018 run, due to the new TCLD location (and the related optics change)

Integrated luminosities in IR2: Pb 2023: 2.16 nb⁻¹ Pb 2018: 0.905 nb⁻¹ (p 2023: 14.5 pb⁻¹)

