

USCMS PURSUE webinar

Abdollah Mohammadi December 11th 2023

Abdollah Mohammadi

- Teaching Faculty and research scientist at UW-Madison Department of Physics
 - <u>abdollah@hep.wisc.edu</u>
- \blacktriangleright My research:
 - SM and Beyond SM Higgs boson
 - Tau Lepton reconstruction and Identification
 - Trigger systems and electronics

- What are you really good at?
 - Asking decent questions and Teaching (I hope)
- Something you've had problems with
 - Changing public's mind that Physics is actually beautiful and not difficult
- I've got my eyes on:
 - Future Higgs Factory
- Things I enjoy:
 Swimming in Summer and
 - skiing in winter
 - > Literature

Mentee and Mentors

Summer student: Kirstin Poppen from

Gustavus Adolphus College, MN

> Faculty mentor:

Abdollah Mohammadi, UW-Madison

Physics Department

Mentee Research Project

Title: Search for a heavy resonance decaying to a pair of boosted Higgs bosons in 4tau final state

- Toward the end of this projects, mentee was supposed to learn the whole chain of data analysis
 - Understand the concept of the event selection and object reconstruction and identification
 - Specific focus on tau lepton and hadronic decays of the tau
 - Learn various methods of background estimation
 - Both from simulation and data
 - Incorporate advanced methods of data analysis using multivariate analysis techniques such as (Deep) Neural Network
 - Become acquainted with the concept of statistics and uncertainties and setting limit on the cross section production of the new particles

Abdollah Mohammadi

τ CMS reconstruction

Decay mode	Resonance	$\mathcal{B}(\%)$
Leptonic decays		35.2
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$		17.8
$\tau^- ightarrow \mu^- \overline{ u}_\mu u_ au$		17.4
Hadronic decays		64.8
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5
$\tau^- ightarrow h^- \pi^0 u_{ au}$	$\rho(770)$	25.9
$ au^- ightarrow h^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	9.5
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	$a_1(1260)$	9.8
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$		4.8
Other		3.3

 τ_h appear in the detector with :

- 1 or 3 charged hadrons (mainly π^{\pm}, K^{\pm} , CMS does not distinguish them)
- 1 or more neutral pions that undergo the decay $\pi^0 \to \gamma \gamma$
- intermediate resonances in the decay

Many decay modes \rightarrow different signatures to be captured by the same algorithm

Abdollah Mohammadi

Physics Motivation

- Graviton/Radion (~TeV scale) are hypothetical particles that arise many Beyond standard model theories and might decay to SM Higgs bosons
- Higgs boson has an approximate mass of 125 GeV, this they will be Lorentzboosted
- Each Higgs decay to pair of collimated taus
- Previous research in CMS only looked for resonant particle with mass up to 1 TeV in 4 tau final state
- This research will look in the range of 1-3 TeV [NEW STUDY]

Mass is the finger print

Mass is the particle's fingerprint

Abdollah Mohammadi

8

Neural Network (Inputs v.s. output)

Overall Experience with Program

- The USCMS workshops and tutorials held at Fermilab were very helpful for the student, so it was a smooth process to get started on the research project
- Kirstin then moved to Madison and closely worked with me and other undergraduate students during the summer. Lots of discussions and a couple of weekly meeting
- Kirstin learned a lot and found the project very interesting. She is now continuing on finishing remainder parts of the analysis
- Kirstin got a chance to present her work at the US-Madison HEP Physics meeting and will present het work in <u>Conferences for Undergraduate Women in Physics (CUWiP)</u>
- She will apply for graduate school next year! Great resume so far!

