ePIC detector at the Electron Ion Collider

Jaroslav Adam

Czech Technical University in Prague

December 4, 2023

Zimányi School 2023

Electron Ion Collider (EIC)

- Polarized ep and e-ions up to 18×275 GeV
- One of RHIC beams is re-used as hadron beam
- Physics of parton distributions, origin of proton spin and mass and jets in cold nuclear matter
- First data early 2030s

ePIC detector (Electron-Proton/Ion Collider Experiment)

Physics case for the EIC

- Spin and mass composition of nucleons (proton spin puzzle)
- QCD dynamics in unexplored kinematic regions
- Jet interactions in cold nuclear matter
- Electroweak and beyond the standard model physics

Looking into a nucleus at the EIC

The ePIC experiment (Electron-Proton/Ion Collider Experiment)

Hermetic coverage for tracking, particle identification and calorimetry in asymmetric collisions

ePIC collaboration

- 500+ participants
- 160+ institutions
- 24 countries

International community pursuing the new experiment

Timeline for EIC and ePIC construction

Detector tasks for ePIC experiment

$$Q^2 = -(p - p')^2$$

 $x = rac{Q^2}{2Pq}$

General DIS process

- Detection of scattered electrons (p') and final-state particles (P_X)
- Basic kinematics is given by virtuality Q² and Bjorken-x

Detector requirements for ePIC experiment

- Vertex detector: precise spatial resolution, low material budget
- Central and endcap trackers: particle momenta (with help of solenoid magnet)
- Particle identification: π/K/p separation for each track
- Calorimeters: eletromagnetic and hadron
- DAQ: streaming readout
- Far-forward and backward detectors: scattered particles at very small angles, luminosity measurement

Coordinate convention for ePIC:

- Forward proton/ion beam direction, z > 0
- Backward electron beam direction, z < 0

Central ePIC detectors in general

Vertex + tracking

- Si and gaseous sensors
- 1.7 T solenoid field

Particle identification

- AC-LGAD for time-of-flight
- Cherenkov hpDIRC and RICH

Calorimeters

- Electromagnetic and hadron parts
- Full enclosure around tracking and identification detectors
- Homogeneous and sampling calorimeters

Meeting the requirements within space constraints

Central tracking detectors

- 6 Si layers + forward/backward disks
- Gaseous µRWell and µMegas
- TOF identification with AC-LGAD

Collision vertex, charged particle momentum, time-of-flight identification

Layout for central tracking

- MAPS (Monolithic Active Pixel Sensor)
 - Based on 65 nm CMOS, developed with ALICE ITS3
- MPGD (Micro Pattern Gaseous Detector)
 - Connection between tracking and particle identification

Particle identification

• Combination of time-of-flight and Cherenkov detectors

Expected momentum (p) and pseudorapidity (η) distribution

Complete coverage in particle momenta and pseudorapidity

Particle identification by time-of-flight

- AC-LGAD structure of Low Gain Avalanche Diodes with capacitive (AC) coupling
- 100% fill factor, timing resolution \sim 30 ps

AC-LGAD structure

Forward disk

Barrel layer

Particle identification by Cherenkov detectors

- Identification by combination of Cherenkov angle and momentum for each track
- Cherenkov radiators, readout by HRPPD (backward), MCP-PMT (barrel) and SiPM (forward)

Calorimeters in ePIC detector

- Complete EM and hadron calorimeters in central region and forward (hadron) endcap
- Tail-catcher for hadron calorimeter in backward endcap

Electron / hadron separation, jet reconstruction

Barrel electromagnetic calorimeter

- Scintillating fibers (SciFi) in Pb absorber
- Imaging layers based on AstroPix sensors

ScFi Layers with two-sided SiPM readout

Forward and backward electromagnetic calorimeters

• Forward ECAL:

- WScFi structure
- Tungsten powder and scintillating fibers
- SiPM readout

• Backward ECAL:

- PWO crystals
- SiPM readout

Electron/pion and $2\gamma/\pi^0$ separation

Backward ECAL

Hadron calorimeters

• Absorber layers and scintillator tiles + SiPM

Jet kinematics reconstruction

Backward tail-catcher

Barrel HCal

Far-forward / backward detectors

- Particles scattered at small angles, outside central detector
- Detectors are placed along beam magnets

Far-forward ($z \gg 0$)

- Hadron beam direction
- Tracking and calorimeters

Far-backward ($z \ll 0$)

- Electron beam direction
- Luminosity measurement, electrons at low-*Q*²

Interaction region layout, note different range in horizontal (x) and longitudinal (z) directions

Far-forward layout

- Roman Pots (RP) for very forward hadrons
- Off-Momentum Detectors (OMD) for nuclear breakup and Λ decays
- ZDC for neutrons and low-energy photons
- B0: tracker and calorimeter inside beam magnet

Diffractive processes, spectators in e+A collisions, nuclear excitation and breakup

The drawing is illustrative, not to scale

Jaroslav Adam (CTU Prague)

Far-forward detectors

- 4 Layers of AC-LGAD
- LYSO crystals for calorimeter

Roman Pots + OMD

AC-LGAD sensor

RP2

Part of outgoing hadron beampipe

RP1

OMD2

OMD

ZDC

 Electromagnetic and hadron parts

Far-backward region, luminosity measurement

- γ photons from Bethe-Heitler bremsstrahlung, *ep*(A) → *e*γ*p*(A)
- Cross section is well known from QED
- Two methods to count the γ photons:
- Direct γ calorimeter (γ cal)
 - Approximate γ counts
 - Online collider performance
- Onversion pair spectrometer (PS)
 - Precise counts for physics
 - γ conversions to e^+e^- pairs
 - Dipole magnet, trackers and calorimeters

Key part to all cross section measurements (most of EIC physics program), target precision of 1%

Far-backward region, low- Q^2 electron tagging

- Two tagger stations (-20 m) and (-35 m) from interaction point (IP)
- Timepix4 tracker and EM calorimeter

Detail at one of tagger stations

Photoproduction physics at low- Q^2 and luminosity precision (coincident e^- and γ detection)

Streaming DAQ

No need for external trigger

- Digitization for all detector data
- Event selection with data from all detectors
- Data volume is reduced at each stage
- Expectation for O(100) PB per run, feasible to store for analysis

Engineering design for ePIC

 Full CAD design ongoing with real dimensions

Integration of services like cabling and cooling

Jaroslav Adam (CTU Prague)

Summary and outlook

The ePIC collaboration was established, enthusiastic international community

- Latest meeting in Warszaw, July 2023: https://indico.cern.ch/event/1238718/
- Next meeting will take place at Argonne National Lab in January 2024: https://indico.bnl.gov/event/20473/
- Effort on preparing technical design for CD-2/3A
- The ePIC detector is closing to its detailed technical design
 - Requirements specified in Yellow Report are met by ePIC detector
 - Built on strong commitment from all RHIC, JLab and international communities