

Ron Belmont, University of North Carolina at Greensboro

A. Gáspár: Calculate the Entropy XIV

23rd ZIMÁNYI SCHOOL

WINTER WORKSHOP

ON HEAVY ION PHYSICS

December 4-8, 2023

Budapest, Hungary

József Zimányi (1931 - 2006)

R. Belmont, UNCG Zimanyi Scho

Zimanyi School 2023, 4 December 2023 - Slide 1

Data collected over 16 years of operations

Data	col	lected	
Data	CO	lectec	

		Energy	Integrated	
Run	Species	√s _{NN} (GeV)	Luminosity (mb ⁻¹)	
1 (2000)	Au+Au	56	1.0E-6	
2 (2001/2002)	Au+Au	200	2.4E-5	
	p+p	200	1.5E+5	
3 (2003)	d+Au	200	2.7E+3	
	p+p	200	3.5E+5	
4 (2004)	Au+Au	200	2.4E+2	
	Au+Au	62.4	9.0E+0	
5 (2005)	Cu+Cu	200	3.0E+3	
	Cu+Cu	62.4	1.9E+2	
	Cu+Cu	22.4	2.7E+3	١,
	p+p	200	3.4E+6	
6 (2006)	p+p	200	7.5E+6	
	p+p	62.4	8.0E+4	
7 (2007)	Au+Au	200	8.1E+2	
8 (2008)	d+Au	200	8.0E+4	
	p+p	200	5.2E+6	
9 (2009)	p+p	500	1.4E+7	
	p+p	200	1.6E+7	
10 (2010)	Au+Au	200	1.5E+3	
	Au+Au	62.4	1.1E+2	
	Au+Au	39	4.0E+4	
	Au+Au	7.7	3.0E+2	

Completed taking data in 2016 Many high impact analyses ongoing

		Energy	Integrated
Run	Species	√s _{NN} (GeV)	Luminosity (mb ⁻¹)
11 (2011)	p+p	500	1.8E+7
. ,	Au+Au	19.6	2.0E+0
	Au+Au	200	1.7E+3
	Au+Au	27	7.0E+0
12 (2012)	p+p	200	1.0E+7
	p+p	510	3.2E+7
	U+U	193	2.0E+2
	Cu+Au	200	5.0E+3
13 (2013)	p+p	510	1.6E+8
14 (2014)	Au+Au	14.6	4.0E+0
	Au+Au	200	7.5E+3
	³ He+Au	200	2.4E+4
15 (2015)	p+p	200	6.0E+7
	p+Au	200	2.0E+5
	p+Al	200	5.0E+5
16 (2016)	Au+Au	200	7.0E+3
. ,	d+Au	200	5.0E+4
	d+Au	62.4	5.0E+3
	d+Au	19.6	8.0E+1
	d+Au	39	2.0E+3

- PRL130, 251901 (2023) Direct γ cross section in p+p $\sqrt{s}=510$ GeV
- PRD107, 112004 (2023) Transverse spin asymmetry of π^0 , η in *p*+Al and *p*+Au $\sqrt{s_{NN}} = 200$ GeV
- PRD107, 052012 (2023) Transverse spin asymmetry of heavy flavor decay electrons
- PRC107, 024907 (2023) Flow in *p*+*p*, *p*+Al, *d*+Au, ³He+Au $\sqrt{s_{NN}} = 200$ GeV
- PRC107, 024914 (2023) Low p_T γ in Au+Au at $\sqrt{s_{NN}}=$ 39 and 62.4 GeV
- PRC107, 014907 (2023) ϕ in Cu+Au and U+U $\sqrt{s_{NN}}=200~{
 m GeV}$
- PRC106, 014908 (2022) ϕ in *p*+*p*, *p*+Al, *d*+Au, ³He+Au $\sqrt{s_{NN}} = 200$ GeV
- PRC105, 064912 (2022) $\psi(2S)$ in p+p, p+AI, and p+Au $\sqrt{s_{NN}}=200~{
 m GeV}$
- arXiv:2303.12899 Suppression of high $p_T \pi^0$ relative to direct γ in central $d+Au \sqrt{s_{NN}} = 200 \text{ GeV}$
- arXiv:2303.07191 Transverse spin asymmetry of h^{\pm} in p+p, p+AI, and $d+Au \sqrt{s_{NN}} = 200$ GeV
- arXiv:2203.17187 Non-prompt γ in Au+Au $\sqrt{s_{NN}} = 200 \text{ GeV}$
- arXiv:2203.17058 Charm and bottom production in Au+Au $\sqrt{s_{NN}}=200~{
 m GeV}$

J/ψ yield in p+p

-Usually attributed to multi-parton interactions

J/ψ yield in p+p

 J/ψ and tracks in the same rapidity

 J/ψ and tracks in the opposite rapidity

 J/ψ and tracks in the same rapidity, tracks from J/psi removed from track count

• J/ψ yield vs multiplicity significantly reduced when

- —Looking at J/ψ and multiplicity in separate rapidity windows
- —Looking at J/ψ and multiplicity in the same rapidity window but removing the $\mu^+\mu^-$ from the multiplicity
- Important implications for MPI picture

• Multiplicity-dependent studies can be used as test for onset of QGP-like signatures

• PHENIX results match ALICE results, double ratio consistent with unity for all multiplicity

- Measurements of intermediate mass dilepton pairs
- Separation of semi-leptonic decay and prompt pairs

J/ψ and $\psi(2S)$ in small systems

Phys. Rev. C 105, 064912 (2023)

• $\psi(2S)$ modification indicates presence of final state effects at backward rapidity —Presence of co-movers? QGP?

J/ψ and $\psi(2S)$ in small systems

Phys. Rev. C 105, 064912 (2023)

Similar patterns for J/ψ and $\psi(2S)$ found at RHIC and LHC

v_n in small systems

v_n in small systems

Phys. Rev. C 105, 024901 (2022)

• All new analysis using two-particle correlations with event mixing instead of event plane method used in Nature Physics publication

-Very different sensitivity to key experimental effects (beam position, detector alignment)

• Uses same detector combination as used in Nature Physics publication

v_n in small systems

• All new analysis using two-particle correlations with event mixing instead of event plane method used in Nature Physics publication

-Very different sensitivity to key experimental effects (beam position, detector alignment)

• Uses same detector combination as used in Nature Physics publication

v_2 in small systems

Phys. Rev. C 107, 024907 (2023)

Systematic study of v_2 in small systems —p+p, p+Au, d+Au, ³He+Au —Centrality dependence —Multiple detector combinations

AMPT exhibits little or no collectivity but large v_2 due to non-flow correlations Also shows similar relative pattern between backward-backward (BB) and backward-forward (BF)

ϕ meson in small systems

• ϕ similar to π^0 with a few hints of a slight enhancement relative to π^0

ϕ meson in small systems

 ϕ nuclear modification reasonably well-described by PYTHIA/Angantyr, but overall system size ordering is missed

ϕ meson in small systems

 ϕ nuclear modification reasonably well-described by PYTHIA/Angantyr, but overall system size ordering is missed

Also reasonably well-described by PYTHIA with nPDFs, but overall system size ordering is missed

Nuclear modification of π^0 in small systems

Phys. Rev. C 105, 064902 (2022)

- Minimum bias collisions shown
- Cronin enhancement at intermediate p_T
 - —Lighter target shows smaller enhancement (p+Al < p+Au)
 - —Heavier projectile shows smaller enhancement (3 He+Au < d+Au < p+Au)

Nuclear modification of π^0 in small systems

Phys. Rev. C 105, 064902 (2022)

Considerable centrality dependence—suppression in central, enhancement in peripheral

Peripheral enhancement not new, but still difficult to understand...

Experimental measure of N_{coll} in small systems

arXiv:2303.12899 (submitted to Phys.Rev.C)

- Use electroweak probes (photons in this case) to directly measure N_{coll}
- No enhancement in peripheral
- Modest suppression in central

$$N_{
m coll}^{
m EXP} = rac{Y_{d
m Au}^{
m direct\ photons}}{Y_{pp}^{
m direct\ photons}}$$

Low p_T direct photons in Au+Au

Direct photons in Au+Au

- 10x higher statistics
- Agreement with previous results
- $R_\gamma > 1
 ightarrow$ excess direct photons

Direct photon v_2 in Au+Au

- Significant reduction in statistical and systematic uncertainties over previous measurement
- Results consistent with zero at high p_T

Medium response to jets in Au+Au

- Enhancement of low p_T hadrons quantified with $D_{AA} = Y_{AA} - Y_{pp}$
- Hybrid model with wake consistent with PHENIX π^0 -h correlations
- Progressing towards $\gamma^{\text{direct}}-h$ correlations in high statistics Au+Au data sets (2014 and 2016)

Multiplicity dependence of v_2 in different event categories in Au+Au

- Narrow selection in ZDC energy approximately fixes N_{part}
- Comparison of v_2 with same multiplicity but different ZDC energy allows study of geometry dependence—not the same as event-shape engineering, but a related idea

Multiplicity dependence of v_2 in different event categories in Au+Au

- Narrow selection in ZDC energy approximately fixes N_{part}
- Comparison of v_2 with same multiplicity but different ZDC energy allows study of geometry dependence—not the same as event-shape engineering, but a related idea

Open heavy flavor v_2 in Au+Au

- First-ever RHIC measurement of open heavy flavor elliptic flow at forward rapidity
- Mass ordering apparent

J/ψ in Au+Au

• PHENIX J/ψ shows stronger suppression at both forward and mid-rapidity compared to ALICE

- PHENIX J/ψ v₂ consistent with zero, while clearly non-zero in ALICE data
- At RHIC energies, regeneration not as significant

Kaon femtoscopy in Au+Au

- Femtoscopy with K^{\pm} and assuming Lévy source
- $\bullet~\lambda$ describes strength of correlation
- α describes shape of distributions— $\alpha = 2$ is Gaussian, $\alpha = 1$ is Cauchy
- R is width parameter (similar to but not same as standard Gaussian radius)

- Femtoscopy with K^{\pm} and assuming Lévy source
- $\bullet~\lambda$ describes strength of correlation
- α describes shape of distributions— $\alpha = 2$ is Gaussian, $\alpha = 1$ is Cauchy
- R is width parameter (similar to but not same as standard Gaussian radius)

Data and analysis preservation

- 192/218 PHENIX papers on HEPData
- REANA is a framework of analysis preservation
- Analysis environment (libraries, etc) are in container (Docker)
- Workflow in YAML
- $\pi^{\rm 0}$ and direct $\gamma~d{+}{\rm Au}$ analyses implemented

🕀 HEPData		O Albeut 🛛 Submission Hudp 🗋 Film Forematis →6 Sign in
		Q Search INTERda Removal Search Advanced 2001
Discouts+ If	let by +	If Internet ander Showing Mort 642 results
Date Block bot		 Image: A set of the set of the
		transverse single-spin asymmetry of midrapidity π^0 and η mesons in μ -Au and μ -Ai collisions at $\sqrt{s_{yy}} = 200$ GeV the initiar addaeses. Addaeses, Addaese
Collaboration #	interest 1462	Ng-Ank-2 SH (2021) 12004, 12004, 2023 Ng-Index Show (2014) 12004, 2023 Ng-Index Show (2014) 12014, 2024 Ng-Index Show (2014) 12014, 2024 N
Subject_areas nucl-ex hep-ex nucl-th	10 0	JE dan telefe Figure 1 (Effent for Figure 1) (e of the o ¹⁴ surveyene up in a generative of giff) = 500 daty ² is to and y ² is its end y ² its end y ² is its end y ² its end y ² is its end y ² its end y ² is its end y ² its end y ² is its end y ² its end
Phrases transverse momentum mid-rapidity	н в	Resourcement of ϕ^{+} meson preduction in Cu + Au at $\sqrt{\sigma_{AA}}=200$ GeV and U + U at $\sqrt{\sigma_{AA}}=103$ GeV Net Web (Modulanding), discharmer, Cu + Mark, C.; et al.
Productions Pro-> CHARSED X Andre-> CHARSED X	21	προτεκ μηταρί το τρομητικός μαρά τη μα Το μαρά το ποτό μαρά τη μοποιεία που μαρά τη μαρ Το μαρά τη μαρά Το μαρά τη μαρά Το μαρά τη μαρά τη Η τη μαρά
d to -> CHURGED T CM Energies (GeV)	10	FigerAD instructions necessarily and necessarily denomes in (i) chains (ii) (iii) (classifier) of 2018 for a comparison FigerAD. Instructions necessarily and any off denomes in (iii) chains (iii) (iii) (classifier) and (iiii) (iii) (classifier) and (iii) (classifier) (iii) (i

- Evidence of final state effects in charmonium production in small systems at RHIC
- Evidence of centrality determination bias in high-*p*_T particle *R*_{xA} in small systems, can use direct photons to correct for this bias
 - -No enhancement in peripheral collisions
 - -Suppression in central collisions
- Comprehensive set of small systems flow measurements
- First measurement of open heavy flavor v_2
- Zero v_2 for J/ψ (and stronger suppression compared to LHC) —Regeneration less important RHIC energies
- New results on femtoscopy with charged kaons
- More interesting and important measurements from PHENIX coming soon!

Additional Material

Small systems geometry scan

Small systems geometry scan

v₂ and v₃ ordering matches ε₂ and ε₃ ordering in all three systems
 —Collective motion of system translates the initial geometry into the final state

Small systems geometry scan

PHENIX, Nat. Phys. 15, 214-220 (2019)

v₂ and v₃ vs p_T predicted or described very well by hydrodynamics in all three systems
 —All predicted (except v₂ in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)
 —v₃ in p+Au and d+Au predicted in C. Shen et al, PRC 95, 014906 (2017)

Can initial state effects explain the data?

R. Belmont, UNCG Zimanyi School 2023, 4 December 2023 - Slide 37

Initial state effects cannot explain the data

PHENIX, Nat. Phys. 15, 214-220 (2019)

 Initial state effects (CGC/Glasma) alone do not describe the data —Phys. Rev. Lett. 123, 039901 (Erratum) (2019) B. Schenke et al, Phys. Lett. B 803, 135322 (2020)

- Initial state effects important for theory, but make little contribution for central collisions
- Overestimation of data assumed to be related to fluid choice parameters and/or longitudinal dynamics

How important are initial state effects?

B. Schenke et al, Phys. Lett. B 803, 135322 (2020)

- For central p+Au, modest correlation between ε_p and v_2
- For central d+Au and ³He+Au, no correlation between ε_p and v_2

How important are initial state effects?

B. Schenke et al, Phys. Rev. D 105, 094023 (2022)

• The CGC/Glasma correlations appear to be too narrow in (pseudo)rapidity to have any significant impact on the data

—The PHENIX data are measured with three detectors spanning $-3.9 < \eta < +0.35$

• We'll talk more about the importance of the pseudorapidity acceptance of experiments soon

Comparisons with STAR

STAR, Phys. Rev. Lett. 130, 242301 (2023)

Good agreement between STAR and PHENIX for $\ensuremath{\textit{v}}_2$

Comparisons with STAR

STAR, Phys. Rev. Lett. 130, 242301 (2023)

Good agreement between STAR and PHENIX for $\ensuremath{\textit{v}}_2$

Large difference between STAR and PHENIX for v_3 in p+Au and d+Au

Large subnucleonic fluctuations can overwhelm the intrinsic geometry in some models, leading to similar ε_3 for all systems

PHENIX data update

PHENIX, Phys. Rev. C 105, 024901 (2022)

• PHENIX has completed a new analysis confirming the results published in Nature Physics

- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
 - -Very different sensitivity to key experimental effects (beam position, detector alignment)

PHENIX data update

PHENIX, Phys. Rev. C 105, 024901 (2022)

• PHENIX has completed a new analysis confirming the results published in Nature Physics

- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
 - -Very different sensitivity to key experimental effects (beam position, detector alignment)

PHENIX data update

PHENIX, Phys. Rev. C 105, 024901 (2022)

• PHENIX has completed a new analysis confirming the results published in Nature Physics

- All new analysis using two-particle correlations with event mixing instead of event plane method —Completely new and separate code base
 - -Very different sensitivity to key experimental effects (beam position, detector alignment)
- It's essential to understand the two experiments have very different acceptance in pseudorapidity —STAR-PHENIX difference actually reveals interesting physics

STAR and PHENIX detector comparison

- The PHENIX Nature Physics paper uses the BBCS-FVTXS-CNT detector combination —This is very different from the STAR analysis (TPC only)
- We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR —Closer, and "balanced" between forward and backward, *but still different*

PHENIX, Phys. Rev. C 105, 024901 (2022)

PHENIX, Phys. Rev. C 105, 024901 (2022)

• Good agreement with STAR for v_2

-Similar physics for the two different pseudorapidity acceptances

PHENIX, Phys. Rev. C 105, 024901 (2022)

- Good agreement with STAR for v_2
 - -Similar physics for the two different pseudorapidity acceptances
- Strikingly different results for v_3
 - -Rather different physics for the two different pseudorapidity acceptances
 - —Longitudinal effects apparently much stronger for v_3 than v_2

PHENIX, Phys. Rev. C 105, 024901 (2022)

• Good agreement with STAR for v_2

-Similar physics for the two different pseudorapidity acceptances

- Strikingly different results for v_3
 - -Rather different physics for the two different pseudorapidity acceptances
 - —Longitudinal effects apparently much stronger for v_3 than v_2

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

- $dN_{ch}/d\eta$ from AMPT, $v_3(\eta)$ from (super)SONIC
- The likely much stronger pseudorapidity dependence of v_3 compared to v_2 is an essential ingredient in understanding different measurements

• Flow vectors become decorrelated with increasing pseudorapidity separation —The effect is much stronger for v_3 than for v_2

• The hierarchy of the measured v_n depends on that of the geometry and decorrelations —Interesting that the decorrelation hierarchy matches that of the geometry...

W. Zhao et al, Phys. Rev. C 107, 014904 (2023)

• Flow decorrelations lead to larger v_3 for STAR, explaining \sim 50% of the difference between the experiments in this particular model

B. Schenke et al, Phys. Rev. D 105, 094023 (2022)

- Intrinsic geometry likely persists over all pseudorapidity ranges
- Fluctuations in the geometry vary as a function of rapidity (p from a p+Pb collision shown)
- PHENIX data follow intrinsic geometry, STAR data follow subnucleonic fluctuations