Report on Tests of CPT Invarianceat CERN

Zimányi School'23, Wigner RCP, 04.12.2023

Dezs ˝o Horváth

horvath.dezso@wigner.hu

Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary $\mathcal{R}_{\mathcal{T}}$

STAR, University Babeș–Bolyai, Cluj–Napoca, Romania

Outline

- Antimatter and its lack in the Universe
- CPT invariance: matter–antimatter symmetry
- Antiparticles vs. particles in the standard model
- **Antimatter experiments at CERN**
- **•** Antimatter in space

Birth of antimatter

Paul Dirac, 1928: Linear equation for the hydrogen atom. Square root of a quadratic equation \Rightarrow two solutions for electrons ($x^2 = 4 \Rightarrow x = \pm 2$).

+ mass and - charge (ordinary electron);

− $-$ mass and $+$ charge (anti-electron = positron).
Negative mass non-physical Dirac: particle holes Negative mass non-physical. Dirac: particle holes.

> Carl Anderson (1932): e^+ in cosmic rays! \Rightarrow real existing particle: positron.

Nobel prizes (in 4 years): Dirac: 1933; Anderson: 1936

Richard P. Feynman: When I was ^a young man, Dirac was myhero. He made ^a breakthrough, ^a new method of doingphysics. He had the courage to simply guess at the form of anequation, the equation we now call the Dirac equation, and totry to interpret it afterwards. **STAR**

Matter–antimatter symmetry

CPT invarianceCharge conjugation: Space reflection: Time reversal:

 $C|\mathbf{p}(r,t)\rangle = |\overline{\mathbf{p}}(r,t)\rangle$ $P|\mathbf{p}(r,t)\rangle = |\mathbf{p}(-r,t)\rangle$ $T|\mathsf{p}(r,t)\rangle = |\mathsf{p}(r,-t)|$ $-t$)>K

 K : complex conjugation for $\exp\{-\mathrm{i}Et\}$ (T antiunitary!)

Basic assumption of field theory:

 $CPT|\mathsf{p}(r,t)\rangle = |\overline{\mathsf{p}}(-r,-t)\rangle \sim |\mathsf{p}(r,t)\rangle$

meaning free antiparticle \sim particle going backwards in space and time.

Giving up CPT one has to give up:

- locality of interactions ⇒ causality, or
- unitarity \Rightarrow conservation of matter, information, ...

What does CPT really state?

Equivalence for **free** particles and antiparticles. Interactions?

- Gravity is OK as long as masses are equal (so far they are).
- Strong (QCD) is OK as colours and anticolours areattracting the same way.
- Electromagnetism is confused by the repulsion of
identical charges, but even there the charges can identical charges, but even there the charges can beswitched.
- Weak interaction is problematic as usual.

D. Horváth and Z. Trócsányi, *Particles and antiparticles*arXiv:2304.10231, MPLA (in print)

Fermions in the standard model

Particle ⁼ – antiparticle ? Not for the weak interaction!

 ${\rm e_R}, \mu_{\rm R} . \tau_{\rm R}, {\rm u_R}, {\rm d}_{\rm R}', {\rm c_R}, {\rm s}'_{\rm R}, {\rm t}_{\rm R}, {\rm b}'_{\rm R}$ $V_{\rm R}$: $T_3 = 0$ $\nu_{\rm R}$ $R_{\rm R}$??

Everything reversed for antiparticles

Fermion ⇒ antifermion: Left ⇒ Right and Right ⇒ Left!
Messive seutripes?? Massive neutrinos??

Antimatter mysteries

- Why there is practically no antimatter in our Universe? At the Big Bang particles and antiparticles should havebeen produced together. Where did antimatter go?
- Could there be a tiny difference between particle and antiparticle to cause this asymmetry?
- Are there particles which are their own antiparticles (Majorana particles)? Could the dark matter of theUniverse consist of such particles?
- Can antimatter be used for something in everyday life or is it just an expensive curiosity? Trivial answer: PET.

Antiparticles in the standard model

No complete particle–antiparticle equivalence in weakreactions.

> Muon decay: μ $+ \rightarrow e^+$ $\nu_{\rm e} \overline{\nu}_{\mu} \leftrightarrow \mu^-{\rightarrow}e^-\nu_{\mu}\overline{\nu}_{\rm e}$

 produces left-handed particles and right-handedantiparticles, not invariant under C reversal.

Possible solution: define particle \rightarrow antiparticle conjugation
with CP instead of C ? with CP instead of C ?

No! Weak forces violate CP , and CPT causes $CP \Rightarrow T$ violation as well (confirmed by expt.)

How to test CPT ?

Particle $=$ – antiparticle ?

$$
\bullet \ \ [m(\mathrm{K}^0) - m(\overline{\mathrm{K}}^0)]/m(\mathrm{average}) < 10^{-18}
$$

- protonn \sim antiproton? (compare $m, \, q, \, \vec{\mu})$
- n \sim antihydrogen ($\overline{p}e^+$)? $2S-1S$, HFS hydrogen \bullet

Antihydrogen, \mathbf{e}^+ –patom, ¹⁹⁹³

 $2S-1S$ transition with 2-photons

Long lifetime, narrow transition, Doppler-freespectroscopy

Feasibility study for the SPSL Committee of CERN (1992) converted into

M. Charlton, J. Eades, D. Horváth, R. J. Hughes, C. Zimmermann: *Antihydrogen physics*, **Physics Reports** *²⁴¹* (1994) 65.

SPSLC accepted and CERN approved to build the Antiproton Decelerator

Great technical accomplishment of Dieter Möhl et al.

First (9) relativistic H atoms at LEAR
-

G. Baur *et al.*, "Production of anti–hydrogen," Phys. Lett. ^B **³⁶⁸** (1996) 251.

Later also at FERMILAB:

G. Blanford *et al.*, "Observation of atomic anti-hydrogen," Phys. Rev. Lett. **⁸⁰** (1998) 3037.

Antimatter factory at CERN

The Antiproton Decelerator at CERNwas built in 1997-99 to study antimatter physics

6 expts (3 each) for *CPT* and antigravity

©Ryugo S. Hayano, Tokyo U.

ASACUSA: Atomic Spectroscopy And Collisions Using Slow Antiprotons Tokyo, Aarhus, Vienna, Brescia, Budapest, Debrecen, Munich BARNA Dániel, RADICS Bálint, JUHÁSZ Bertalan, SÓTÉR Anna, HORVÁTH Dez<mark>s</mark>ő

The Antiproton Decelerator: cooling

$\sim 4 \times 10^7$ 100 MeV/c antiprotons every 85 s Pavel Belochitskii: AIP Conf. Proc. 821 (2006) 48

How to produce antihydrogen?

Radiative $(\overline{\mathrm{p}}\mathrm{e}^+\gamma)$: deep bonding, low rate(hopeless)3-body $(\overline{\rm p} {\rm e}^+ {\rm e}^+)$: shallow bond, high rateProposed by G. Gabrielse, ATRAP & Harvard U.

With excited positronium: high rate, deep bond(planned)Proposed by B. Deutch et al., Aarhus

ATHENA: first cold H atoms at AD

Fig.5. Above: A diagram of the ATHENA antihydrogen detector. Right: An antihydrogen annihilation event in ATHENA, reconstructing four charged pions (yellow) and two 511 keV photons (red). (Image credits: ATHENA Collaboration.)

ATHENA Collaboration (1997 – 2005) \Rightarrow ALPHA Collaboration

ALPHA: ^H production

ALPHA: Antimatter Laser PHysicsApparatus (19 institutes of ⁹ countries)

- Capture 90,000 antiprotons.
- Mix with 3 million positrons.
- Produce 50,000 ^H atoms.
- Remove charged particles.
- Trap 20 H at $T = 0.54$ K.

H kept trapped for 10 s \Rightarrow waiting deexcitation to 1S ground state.
Demanatrated by keeping \overline{H} for a CO hours. Demonstrated by keeping ^H for >60 hours. Detected and measured by dropping $B=1$ T \Rightarrow annihilation.

ALPHA: ^H charge

H trapped in $B = 1$ T at $T = 0.1$ K Randomly kicked with $\Delta \Phi \sim 100$ V After $N=84900$ kicks $\rm H$ of charge Qe gains energy: $\Delta E \sim |Q| e \Delta \Phi \sqrt{N}$ \rm{H} annihilates if $\Delta E > E_{\sf well}$ Result: $|Q| < 0.71 \times 10^{-9}$

ALPHA Coll.,

An improved limit on the charge of antihydrogen from stochastic acceleration,

Nature ⁵²⁹ (2016) 373.

ALPHA: ^H ¹^S $\overline{}$ $-$ 2S transition

Measure annihilation rates.

Wait for 10s to reach $\mathrm{H}(1S)$ state.

Excite $1S{\rightarrow}2S$ with two 243 nm photons

(standing wave for 300 s) tuned around

resonance (appearance).

Use microwave to remove residual $1S$ atoms (disappearance).

Flush trap by dropping B (residuals).

FRN

ALPHA:^H ¹^S [−] ²^S **spectroscopy**

Result using 15000 ^H atoms: $f_{d-d} = 2\,466\,061\,103\,079.4 \pm 5.4$ kHz

For hydrogen: $f_{d-d} = 2\,466\,061\,103\,080.3 \pm 0.6$ kHz

Difference (CPT test): 2×10^{-12}

ATRAP: Antimatter trap

4×10^9 e^9 e⁺ ($T=1.2$ K, $p < 6\times 10^{-17}$ Torr) **Contract Contract** Continuous $\overline{\mathrm{H}}$ production

Antimatter gravity

I read a book on anti-gravity

I couldn't put it down!

Negative mass \Rightarrow repulsive gravity??

95 % of nucleon mass is energy, small grav. diff. between H and \rm{H}

Not CPT : weak equivalence principle

AEGIS: antimatter gravity

Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy (in preparation, ⁷⁷ authors)

H production with Ps proven

Stark acceleration (electric dipole in inhom. E-field) of excited \rm{H}

Gravitational Behaviour of Antihydrogen at Rest (in preparation)

$\overline{\rm p}$ + Ps \rightarrow $\overline{\rm H};$ $\overline{\rm H}$ + Ps \rightarrow $\overline{\rm H}^{+}$ (cooling); back to $\overline{\rm H}$: let it fall

ALPHA-gravity: setup

ALPHA-gravity trap (2023)

ALPHA-gravity measurement (2023)

ALPHA-g Measurement Scheme

Result (2023): $\overline{g}/g=0.75\pm0.13$ (stat+syst) ±0.16 (simulation)

Antigravity out. Aim: 1 % measurement.

BASE: Baryon Antibaryon Symmetry Experiment

Direct high-precision measurement of the magnetic moment of ^a singleantiproton stored in ^a cryogenic Penning trap

 $(q/m)_{\rm p}/(q/m)_{\overline{\rm p}}$ $\overline{\text{p}} = 1.000000000003(16)$

M. J. Borchert *et al.* [BASE], "A 16-parts-per-trillion measurement of the antiproton-to-proton

charge/mass ratio," Nature **⁶⁰¹** (2022) no.7891, 53-57.

Antihydrogen beam

ASACUSA: MUSASHI

Monoenergetic Ultra Slow AntiprotonSource forHigh–precision**Investigations**

Musashi Miyamoto self-portrait ~ 1640

5.8 MeV $\overline{\rm p}$ injected into RFQ 100 keV $\overline{\mathrm{p}}$ injected into trap 10^6 $\overline{\rm{p}}$ tr \overline{p} trapped and cooled (2002) ~ 350000 slow $\overline{\text{p}}$ extracted (2004) Cold $\overline{\text{p}}$ compressed in trap (2008)

 $(5\times10^5$ $^{\mathrm{b}}$ $\overline{\mathrm{p}}, E = 0.3$ eV, $R = 0.25$ mm)

N. Kuroda *et al.*, Nature Commun. **5** (2014) 3089.

E. Widmann *et al.*, Hyperfine Interact. **²⁴⁰** (2019) ⁵

ASACUSA: measuring \overline{p} mass

Transition between long- and short-lived states ⇒ prompt annihilation

Theory: Vladimir Korobov (Dubna) ⇒ $\Delta M_{\overline{\text{p}}} \sim 10^{-12}$

Extra Low ENergy Antiprotons (ELENA)

New deceleration ring at CERN: 100 keV $\overline{\rm p}$ for trapping

All existing AD experiments profit, new ones made possible (gravity, X-rays, nuclear studies)

Antimatter in Space

AMS-2: Alpha Magnetic Spectrometerto discover antimatter (anti-helium!) anddark matterMass: 8500 kg, 1200 kg perm. magnet Father: Sam Ting, cost: ² G\$Construction: CERNLaunch: May 2011, USA

Control room at CERN

AMS-2: Alpha Magnetic Spectrometer

Could come from dark matter or pulsars.

AMS2 will collect data for 10–15 years.

AMS-2: Electrons vs. positrons

Thanks for your attention

Spare slides for discussion

Antiproton production

CERN exhibition in Globe: $\overline{\text{p}}$ production target at AD

Dezső Horváth: CPT Tests at CERN

Zimányi School'23, 04.12.2023 – p. 38

Steps toward ^H spectroscopy

- Putting antiprotons (\bar{p}) in electromagnetic trap
- Trapping and cooling antiprotons
- Cooling slow positrons (e⁺ from 22 Na) in trap
- Mixing $\overline{\rm p}$ and ${\rm e}^+ \rightarrow$ recombination in ${\rm e}^+ {\rm e}^+ \overline{\rm p}$
collisions (G. Gabrielse, ATRAP & Harvard collisions (G. Gabrielse, ATRAP & Harvard U.)
- Trapping antihydrogen, waiting for deexcitation
- **Cooling antihydrogen**
- Laser spectroscopy on antihydrogen

2017: done by the ALPHA Collaboration!

ALPHA: H hyperfine spectrum

Energy levels of $\rm\,\overline{\rm pHe^4}$

Two-photon spectroscopy

In low density gas main precision limitation: thermal Doppler broadening even at $T < 10 \,$ K Excite $\Delta \ell=2$ transition with 2 photons Two counterpropagating photons with $\nu_1\sim\nu_2$ eliminate 1st order Doppler effect

Laser linewidth should not overlap with resonance

M. Hori, A. Sótér, D. Barna, A. Dax, R.S. Hayano, S. Friedreich, B. Juhász, T. Pask, E. Widmann, D. Horváth, L. Venturelli, N. Zurlo: *Two-photon laserspectroscopy of pbar-He*+ *and the antiproton-to-electron mass ratio*, **Nature**475 (2011) 484-488, **Few Body Syst.** *54* (2013) 917-922.

Two-photon spectroscopy: parameters

- Precision of lasers: $< 1.4 \times 10^{-9}$.
- 7×10^6 $\overline{\text{p}}$ /pulse, $E\approx$ 6 \overline{p} /pulse, $E\approx 70$ keV, 200 ns long, Ø20 mm.
- Target: He gas, $T\approx 15$ K, $p=0.8$ -3 mbar
- Laser beams: λ_1 $\lambda_1 = 417$ nm, λ_2 $_2 = 372$ nm, $P \approx 1$ mJ/cm 2
- Transition: (n=36, l=34) \rightarrow (n=34, l=32); $\Delta \nu = 6$ GHz $\nu = 6$ GHz
- Measured linewidth: ≈ 200 MHz
- Width: Residual Doppler broadening, hyperfinestructure, Auger lifetime, power broadening.

M. Hori, A. Sótér, D. Barna, A. Dax, R.S. Hayano, S. Friedreich, B. Juhász, T. Pask, E. Widmann, D. Horváth, L. Venturelli, N. Zurlo: "Two-photon laser spectroscopy of pbar-He $^+$ and the antiproton-to-electron mass ratio" **Nature**475 (2011) 484-488

Two-photon spectroscopy: spectra

M. Hori et al., **Nature**475 (2011) 484-488

Arrows: hyperfine transitions