Pion observables calculated in Minkowski and Euclidean spaces with *Ansätze* for quark propagators

Talk presented at ZIMÁNYI SCHOOL 2023 Winter Workshop on Heavy Ion Physics

Budapest, Hungary, 4.-8. December 2023.

Dubravko Klabučar (1) in collaboration with Dalibor Kekez(2)

Physics Department, Faculty of Science – PMF, University of Zagreb, Croatia $^{(1)}$ Rudjer Bošković Institute, Zagreb, Croatia $^{(2)}$

December 4, 2023.

Overview

Introduction

Quark Propagator

Wick rotation

General properties of quark propagators

3R Quark Propagator

Electromagnetic form factor

Transition form factor

Pion distribution amplitude

Summary

Introduction

Talk = based on Kekez and Klabučar, Phys. Rev. D 107, 094025 (2023).

- * This paper pays attention to describing the pion phenomenologically as good as possible in the chosen model framework, but this is secondary.
- \star Its primary concern is formulating clear connections between Euclidean and Minkowski spacetime calculations of observables of $q\bar{q}$ bound states.
 - Many QFT studies (on lattice, most of Schwinger-Dyson studies, etc.) are not done in the physical, Minkowski spacetime, but in Euclidean.
 - Relating Minkowski and Euclidean spaces ("Wick rotation") must be under control. But, this is highly nontrivial in the nonperturbative case – most importantly, the nonperturbative QCD.
 - Do nonperturbative Green's functions permit Wick rotation?
 - For solving Bethe-Salpeter equation and calculation of processes, extrapolation to complex momenta is necessary.

 Knowledge of the analytic behavior in the whole complex plane is needed.
 - Very complicated matters ⇒ studies of Ansatz forms are instructive and can be helpful to ab initio studies of nonperturbative QCD Green's functions. ... and vice versa of course ...

Lattice-inspired Ansatz for propagators in nonperturbative QCD

Lattice data: Parappilly *et al.*, Phys. Rev. D **73**, 054504 (2006) compared with nonperturbatively dressed (DChSB-generated) constituent quark masses in the propagator *Ansätze* ('3R' and 'MMF') by

- [1] Alkofer, Detmold, Fischer and Maris, Phys. Rev. D 70, 014014 (2004).
- [2] Mello, de Melo, and Frederico, *Minkowski space pion model inspired by lattice QCD running quark mass*, Phys. Lett. B 766, 86 (2017).

How Schwinger-Dyson approach generates quark propagators

- Schwinger-Dyson (SD) approach: ranges from solving SD equations for Green's functions of non-perturbative QCD *ab initio*, to higher degrees of phenomenological modeling, *esp.* in applications including $T, \mu > 0$.
 - e.g., [Alkofer, v.Smekal Phys. Rept. 353 (2001) 281], and [Roberts, Schmidt Prog.Part.Nucl.Phys. 45 (2000)S1]
- SD approach to quark-hadron physics = nonpertubative, covariant bound state approach with strong connections with QCD.

The "gap" Schwinger-Dyson equation for the quark propagator:

$$S^{-1}(p) = p - m - iC_F g^2 \int \frac{d^4k}{(2\pi)^4} \gamma^{\mu} S(k) \Gamma^{\nu}(k, p) G_{\mu\nu}(p - k) . \tag{1}$$

Already just S(p) enables calculating an observable - pion decay constant

... since close to the chiral limit, $\Gamma_\pi^{BS} \approx -\frac{2B(q^2)}{f_\pi} \gamma_5$ is a reasonable approximation,

$$\Rightarrow \quad f_{\pi} \approx i \frac{N_c}{2} \frac{1}{M_{\pi}^2} \int \frac{d^4q}{(2\pi)^4} \mathrm{tr} \left(\not\!P \gamma_5 S(q + \frac{P}{2}) \left(-\frac{2B(q^2)}{f_{\pi}} \gamma_5 \right) S(q - \frac{P}{2}) \right)$$

Dynamically generated nonperturbative quark propagator

In principle, SD Eq. (1) yields the nonperturbatively dressed quark propagator

$$S(q) = \frac{A(q^2)q' + B(q^2)}{A^2(q^2)q^2 - B^2(q^2)} = Z(-q^2) \frac{q' + M(-q^2)}{q^2 - M^2(-q^2)} = -\sigma_V(-q^2)q' - \sigma_S(-q^2)$$

[M(x) =dressed quark mass function, Z(x) = wave-function renormalization]

- One usually gets just a model solution for the propagator S(q), since one usually simplifies SD Eq. (1) by approximations & modeling! For example:
- 1.) rainbow(-ladder) for the dressed quark–gluon vertex: $\Gamma^{\mu}(k,p) o \gamma^{\mu}$,
- 2.) $A(k^2)=1$, 3.) various model Ansätze for the dressed gluon propagator, $g^2G^{\mu\nu}(k)\propto \alpha_s^{\rm eff}(k^2)/k^2$, so that, e.g., Eq. (1) yields

$$M(-p^{2}) = m + I(-p^{2}) = m + \int d^{4}k \, f(-k^{2})g(-(k-p)^{2})$$

$$g(-k^{2}) = 4\pi C_{F} \frac{\alpha_{s}^{\text{eff}}(-k^{2})}{(-k^{2})} \quad f(-k^{2}) = \frac{3i}{(2\pi)^{4}} \frac{M(k^{2})}{k^{2} - M^{2}(k^{2})}$$

$$I(-p^{2}) = \int d^{3}k \int dk^{0} \, f(-(k^{0})^{2} + |\mathbf{k}|^{2})g(-(k^{0} - p^{0})^{2} + |\mathbf{k} - \mathbf{p}|^{2})$$

Wick rotation

- Even with such approxim. & modeling, solving SD equations like Eq. (1), and related calculations (e.g., of f_{π}) with Green's functions like S(q), are technically very hard to do in the physical, Minkowski space-time.
- Thus, additional simplification is sought by transforming to QFT in 4-dim.
 Euclidean space by the Wick rotation to the imaginary time component:
 q⁰ → i q⁰.

The issue of singularities is more problematic than in the perturbative case!

Example: simple separable approximation for low-E QCD

$$g^{2}G^{\mu\nu}=g^{\mu\nu}D(p-k)\approx g^{\mu\nu}\left[D_{0}f_{0}(-p^{2})f_{0}(-k^{2})-D_{1}(p\cdot k)f_{1}(-p^{2})f_{1}(-k^{2})\right]$$

produces complicated singularity structure in the complex plane $z = -k^2$

The "gap" SD equation \Rightarrow

$$A(p^2) = 1 + af_1(-p^2)$$

 $B(p^2) = m + bf_0(-p^2)$

Typical phen.succes. Ansatz

$$f_0(x) = e^{-x/\Lambda_0^2}$$

 $f_1(x) = \frac{1 + e^{-x_0/\Lambda_1^2}}{1 + e^{-(x-x_0)/\Lambda_1^2}}$

produces poles which are obstacles to (any) Wick rotation!

The contour plot of $z \mapsto \log |A(z)^2z + B(z)^2|$ close to the origin. The red points are solutions of the equation $A(z)^2z + B(z)^2 = 0$ and extend much further than the depicted region.

General properties a quark propagator should have:

- $S(q) o S_{\text{free}}(q)$ because of asymptotic freedom $\Rightarrow \sigma_{V.S}(-q^2) o 0$ for $q^2 \in \mathbb{C}$ and $q^2 o \infty$
- $\sigma_{V,S}(-q^2) o 0$ cannot be analytic over the whole complex plane
- positivity violating spectral density ↔ confinement

Try Ansätze of the form (meromorphic parametrizations, like Alkofer&al. [1]):

$$S(p) = \frac{1}{Z_2} \sum_{j=1}^{n_p} r_j \left(\frac{p' + a_j + ib_j}{p^2 - (a_j + ib_j)^2} + \frac{p' + a_j - ib_j}{p^2 - (a_j - ib_j)^2} \right)$$

Dressing f'nctns are thus
$$\sigma_V(x) = \frac{1}{Z_2} \sum_{j=1}^{n_p} \frac{2r_j(x+a_j^2-b_j^2)}{(x+a_j^2-b_j^2)^2+4a_j^2b_j^2}$$

(e.g., see Ref. [1]) and
$$\sigma_S(x) = \frac{1}{Z_2} \sum_{j=1}^{n_p} \frac{2r_j a_j (x + a_j^2 + b_j^2)}{(x + a_j^2 - b_j^2)^2 + 4a_j^2 b_j^2}$$

Constraints:

$$\sum_{j=1}^{n_p} r_j = \frac{1}{2}$$
 $\sum_{j=1}^{n_p} r_j a_j = 0$

3R quark propagator - 3 poles on the real axis

Parameters (yielding 3R propagator of Alkofer & al., and larger f_{π}): $n_p = 3$, $a_1 = 0.341$, $a_2 = -1.31$, $a_3 = -1.35919$, $b_1 = 0$, $b_2 = 0$, $b_3 = 0$, $r_1 = 0.365$, $r_2 = 1.2$, $r_3 = -1.065$, $Z_2 = 0.982731$.

- \Rightarrow No obstacles to Wick rotation $\Rightarrow \pi$ decay constant calculated equivalently
- * in Minkowski space:

$$f_{\pi}^{2} = -i \frac{N_{c}}{4\pi^{3} M_{\pi}^{2}} \int_{0}^{\infty} \xi^{2} d\xi \int_{-\infty}^{+\infty} dq^{0} B(q^{2}) \operatorname{tr} \left(P \gamma_{5} S(q + \frac{P}{2}) \gamma_{5} S(q - \frac{P}{2}) \right)$$

where
$$q^2 = (q^0)^2 - \xi^2$$
, $\xi = |\mathbf{q}|$, and $q \cdot P = M_{\pi} q^0$,

* in Euclidean space:

$$f_{\pi}^2 = rac{3}{8\pi^3 M_{\pi}^2} \int_0^{\infty} dx \, x \int_0^{\pi} deta \, \sin^2eta \, B(q^2) {
m tr} \left(P_1 \gamma_5 S(q + rac{P}{2}) \gamma_5 S(q - rac{P}{2})
ight)$$

where $q^2 = -x$ and $q \cdot P = -iM_{\pi}\sqrt{x}\cos\beta$.

Numerically, for $\xi = 0.5$

$$|I_{\rm pp} + I_{\rm res} + I_{\rm inf} + I_{\rm eu} - I_{\rm pe}| \sim 10^{-8}$$

Particular integrals for $\xi = 0.5$

$$I_{pp} \approx 4 \cdot 10^{-12}$$
,
 $I_{res} = -0.0221314i$
 $I_{inf} \approx 4 \cdot 10^{-12}$,
 $I_{eu} = 0.0221314i$
 $I_{pe} = 0$

 $\Rightarrow f_{\pi} = 0.072 \text{ GeV}$ in both Euclidean and Minkowski space.

Contour plot of $\mathrm{Im}(\sigma_V(z))$ in the complex z-plane: the first two poles on the real axis are very close - "glued together" .

A similar contour plot of $Im(\sigma_S(z))$ in the complex z-plane.

Spectral representation of the 3R quark propagator is defined by the spectral density

$$\rho(\sigma^2) = \sum_{j=1}^3 A_j^{-1} \delta(\sigma^2 - M_j^2)$$

where $A_1 = 1.35$, $A_2 = 0.41$, $A_3 = -0.46$, $M_j = B_j/A_j$, j = 1, 2, 3.

Although the propagator functions A and B from $S^{-1}(q) = A(-q^2)q - B(-q^2)$ exhibit different structure of the poles,

$$A(x) = \frac{\sigma_V(x)}{\sigma_S^2(x) + x \sigma_V^2(x)}$$

$$B(x) = \frac{\sigma_S(x) + x \sigma_V(x)}{\sigma_S^2(x) + x \sigma_V^2(x)}$$

the poles are still on the real axis:

Contour plot of Im(A(z)) in the complex z-plane: all poles are still on the real axis.

Similarly with B in the 3R Quark Propagator:

Contour plot of Im(B(z)) in the complex z-plane: all poles are still on the real axis.

But a modest change of parameters spoils 3R Quark Propagator:

Contour plot of Im(B(z)) in the complex z-plane. Parameters changed to $a_1=-1.31 \rightarrow a_1=-2 \Rightarrow$ complicated analytic structure, some poles of B(z) are now moved off the real axis. Wick rotation does not go any more!

Quark propagator model of Mello, de Melo, and Frederico - MMF

[2] Mello, de Melo, and Frederico, Phys. Lett. **B766**, 66 (2017)

$$M(x) = (m_0 - i\varepsilon) + m^3 \left[x + \lambda^2 - i\varepsilon \right]^{-1}$$
$$Z(x) = 1$$

Model parameters: $m_0 = 0.014 \text{ GeV}$, m = 0.574 GeV, and $\lambda = 0.846 \text{ GeV}$ Asymptotic expansions about ∞ and 0:

$$\begin{split} M(x) &= m_0 + \frac{m^3}{x} - \frac{\lambda^2 m^3}{x^2} + \mathcal{O}((\frac{1}{x})^3) \;, \qquad \qquad \mathrm{for} \;\; x \to \infty \;, \\ M(x) &= \left(m_0 + \frac{m^3}{\lambda^2}\right) - \frac{m^3 x}{\lambda^4} + \frac{m^3 x^2}{\lambda^6} + \mathcal{O}(x^3) \;, \qquad \qquad \mathrm{for} \;\; x \to 0 \;, \end{split}$$

Quark propagator model of Mello, de Melo, and Frederico - MMF

The quark dressing functions σ_V and σ_S :

$$\sigma_V(x) = \sum_{j=1}^3 \frac{b_{Vj}}{x + a_j}$$

$$\sigma_S(x) = \sum_{j=1}^3 \frac{b_{Sj}}{x + a_j}$$

The mass parameters:

$$a_1 = 0.1046 \text{ GeV}^2$$

 $a_2 = 0.4160 \text{ GeV}^2$

$$a_3 = 0.9110 \text{ GeV}^2$$

Quark propagator model of Mello, Melo, and Frederico - MMF

Contour plot of $Im(\sigma_V(z))$ in the complex z-plane.

$$f_{\pi} = i \frac{N_c}{2} \frac{1}{M_{\pi}^2} \int \frac{d^4q}{(2\pi)^4} \mathrm{tr} \left(P \gamma_5 S(q + \frac{P}{2}) \left(-\frac{2B(-q^2)}{f_{\pi}} \gamma_5 \right) S(q - \frac{P}{2}) \right)$$

(1) Calculation using FeynCalc and Package-X (or LoopTools)

$$f_{\pi} = 87.5599 \; \mathrm{MeV}$$

- (2) Euclidean integration
 - "naïve" Wick rotation $(q^0 \rightarrow -iq^0)$ is correct here
 - two nontrivial integration (red variables) $q = (q^0, \xi \sin(\theta) \cos(\varphi), \xi \sin(\theta) \sin(\varphi), \xi \cos(\theta))$
 - numerical integration using Mathematica
 - the same result for f_π

Generalized impulse approximation to the charged pion electromagnetic form factor $F_{\pi}(Q^2)$.

$$\langle \pi^{+}(P')|J^{\mu}(0)|\pi^{+}(P)\rangle = (P^{\mu} + P'^{\mu})F_{\pi}(Q^{2}) = i(Q_{u} - Q_{d})\frac{N_{c}}{2}\int \frac{d^{4}q}{(2\pi)^{4}} \times \\ \times \operatorname{tr}\left\{\bar{\Gamma}(q - \frac{P}{2}, P')S(q + \frac{1}{2}(P' - P))\Gamma^{\mu}(q + \frac{1}{2}(P' - P), q - \frac{1}{2}(P' - P)) \\ \times S(q - \frac{1}{2}(P' - P))\Gamma(q - \frac{1}{2}P', P)S(q - \frac{1}{2}(P + P'))\right\}$$

- $\Gamma^{\mu}(p',p)$ dressed quark γ vertex, modeled by Ball-Chiu vertex
- The proper perturbative QCD asymptotics:

$$F_\pi(Q^2) = 16\pi rac{lpha_s(Q^2)}{Q^2} f_\pi^2 \propto rac{1}{Q^2 \ln(Q^2)} \quad ext{for } Q^2
ightarrow \infty$$

cannot be expected with the *present* Ansätze, but presently available experimental data are anyway well above the pQCD predictions.

* In the case of the MMF quark propagator, we used three different methods of calculation. All three yielded the same results.

Various calculation methods employed by Kekez and Klabučar, Phys. Rev. D **107**, 094025 (2023)

- (1) Calculation using FeynCalc [?, ?] and Package-X [?, ?]
- (2) "Euclidean" integration
 - 3 nontrivial integrations (over q^0 , ξ , ϑ)
- (3) Minkowski space integration utilizing light-cone momenta

Dressed quark–quark–photon vertex $\Gamma^{\mu}(p',p)$

Quark-quark-photon vertex: Ball-Chiu vertex

$$\Gamma^{\mu}(p',p) = \frac{1}{2} [A(-p'^2) + A(-p^2)] \gamma^{\mu}$$

$$+ \frac{(p'+p)^{\mu}}{(p'^2-p^2)} \Big\{ [A(-p'^2) - A(-p^2)] \frac{(p'+p)}{2} - [B(-p'^2) - B(-p^2)] \Big\}$$

Ward-Takahashi identity: $(p'-p)_{\mu}\Gamma^{\mu}(p',p) = S^{-1}(p') - S^{-1}(p)$

For the model of Mello, Melo & Frederico, $\Gamma^{\mu}(p',p) = \gamma^{\mu} - \frac{m^{2}(p'^{\mu} + p^{\mu})}{(p'^{2} - \lambda^{2})(p^{2} - \lambda^{2})}$

Poles of the integrand:

$$(q_0)_{1,2} = \mp \sqrt{M_q^2 + \xi^2 - \xi \sqrt{Q^2} \cos \vartheta + Q^2/4}$$

$$(q_0)_{3,4} = \mp \sqrt{M_q^2 + \xi^2 + \xi \sqrt{Q^2} \cos \vartheta + Q^2/4}$$

$$(q_0)_{5,6} = \frac{1}{2} \left(\sqrt{4M_\pi^2 + Q^2} \mp 2\sqrt{M_q^2 + \xi^2} \right)$$

$$(q_0)_{7,8} = \frac{1}{4} \left(\sqrt{4M_\pi^2 + Q^2} \mp \sqrt{16M_q^2 + 16\xi^2 + 8\xi\sqrt{Q^2} \cos \vartheta + Q^2} \right)$$

$$(q_0)_{9,10} = \frac{1}{4} \left(\sqrt{4M_\pi^2 + Q^2} \mp \sqrt{16M_q^2 + 16\xi^2 - 8\xi\sqrt{Q^2} \cos \vartheta + Q^2} \right)$$

$$M_q^2 \in \{a_1, a_2, a_3, \lambda^2\}$$

Loop integration: q^0 complex plane Wick rotation:

$$q^0 = (q^0)_c - iq_4, \quad -\infty < q_4 < +\infty$$

$$\vartheta = \frac{\pi}{3}$$

All in units of GeV. Dot–dashed green line represents $(q^0)_c$, blue dotted lines represent odd-indexed poles (set \mathcal{A}), and red dashed lines represents even–indexed poles (set \mathcal{B}).

Introduction Quark Propagator Wick rotation General properties of quark propagators 3R Quark Propagator Electromagnetic form factor Transition form

Electromagnetic form factor - data and calculations compared

Charged π EM form factor \times Q^2 . Experimental points are shown by olive triangles [102], green diamonds [103], pink circles [104-106], and magenta squares [107-110]. Solid **red circles** and **blue diamonds** are our results from 3R and MMF *Ansätze*, respectively. The **black dashed line** is the result of Mello et al. [19]. The **black solid line** corresponds to the perturbative QCD result with asymptotic PDA.

Transition form factor for flavorless pseudoscalar mesons

- Diagram for $\pi^0 o \gamma \gamma$ decay, and for the $\gamma^\star \pi^0 o \gamma$ process if $k'^2
 eq 0$
- ... also for η and η' , but even just π^0 is challenging enough for now

Transition form factor

$$\begin{split} S_{ff} &= (2\pi)^4 \delta^{(4)}(P-k-k') e^2 \, \varepsilon^{\alpha\beta\mu\nu} \varepsilon_\mu^{\;\star}(k,\lambda) \varepsilon_\nu^{\;\star}(k',\lambda') T_{\alpha\beta}(k^2,k'^2) \\ T^{\mu\nu}(k,k') &= \varepsilon^{\alpha\beta\mu\nu} \, k_\alpha k_\beta' \, T(k^2,k'^2) \\ &= -N_c \, \frac{\mathcal{Q}_u^2 - \mathcal{Q}_d^2}{2} \int \frac{d^4q}{(2\pi)^4} \mathrm{tr} \{ \Gamma^\mu(q-\frac{P}{2},k+q-\frac{P}{2}) S(k+q-\frac{P}{2}) \\ &\times \Gamma^\nu(k+q-\frac{P}{2},q+\frac{P}{2}) S(q+\frac{P}{2}) \left(-\frac{2B(q^2)}{f_\pi} \gamma_5 \right) S(q-\frac{P}{2}) \} \\ &+ (k \leftrightarrow k',\mu \leftrightarrow \nu) \; . \end{split}$$

The π^0 transition form factor: $F_{\pi\gamma}(Q^2) = |T(-Q^2,0)|$

- * UV limit: asymptotically, $F_{\pi\gamma}(Q^2) \to 2f_\pi/Q^2$ for $Q^2 \to \infty$ (Caveat: persistent nonperturb. effects by Eichmann & al, PLB 774 (2017) 425)
- * The current data (up to 35 GeV²) do not show agreement with this limit yet.

In the chiral limit, the π^0 decay amplitude to two real photons: $T(0,0)=rac{1}{4\pi f_\pi}$

Introduction Quark Propagator Wick rotation General properties of quark propagators 3R Quark Propagator Electromagnetic form factor Transition form

Transition form factor

Blue dots represent π^0 transition form factor from MMF quark-propagator Ansatz. Red pluses are calculated from 3R Ansatz. The blue solid line and red dashed line represent the Brodsky-Lepage interpolation formula with f_π from MMF and 3R quark-propagator models, respectively. Solid circles and diamonds (with error bars) are the data points of BABAR [116] and Belle [117] Collaborations, respectively.

Pion distribution amplitude

Blue and red lines = obtained from MMF and 3R *Ansätze*, respectively. Black dotted line represents the asymptotic form, $\phi_{\pi}^{\rm as}(u)=6u(1-u)$. Dash-dotted green line (very close to the solid blue one) is the PDA from the state-of-the-art SDE pion bound state, Eq. (22) in *Roberts, Symmetry 12 (2020) 9, 1468*.

$$\phi_{\pi}(u) = i \frac{N_c}{8\pi f_{\pi}} \operatorname{tr} \left(\gamma_+ \gamma_5 \int \frac{dq_-}{2\pi} \int \frac{d^2q_{\perp}}{(2\pi)^2} S(q + \frac{P}{2}) \Gamma_{\pi}(q, P) S(q - \frac{P}{2}) \right)$$

For high values of Q²:

$$F_{\pi\gamma}(Q^2) = \frac{2f_{\pi}}{3Q^2} \int_0^1 \frac{du \, \phi_{\pi}(u)}{1-u}$$

The asymptotic form of the pion distribution amplitude gives

$$\int_0^1 \frac{du \, \phi_\pi^{\rm as}(u)}{1-u} = 3$$

• This actual ϕ_{π} gives

$$\int_{0}^{1} \frac{du \, \phi_{\pi}(u)}{1-u} = 3.07$$

Asymptotic form of the transition form factor:

$$F_{\pi\gamma}(Q^2)\sim rac{2f_\pi}{Q^2}$$

Summary

- The analytic structure of quark propagators and some observables has been investigated in the nonperturbative regime of QCD for two Ansätze/propagator models which permitted us formulating a clear connections between Euclidean and Minkowski spacetime calculations for all observables mentioned below.
- The propagator model of Mello, de Melo, and Frederico [2] was found relatively successful phenomenologically. Already they calculated pion decay constant and electromagnetic form factor $F_{\pi}(Q^2)$ of the charged pion. However, we found their result increasingly inaccurate for $Q^2 > 2$ GeV², since their $Q^2 F_{\pi}(Q^2)$ was not falling noticeably, but remained almost a constant. We checked the correctness of our $Q^2 F_{\pi}(Q^2)$ by redoing the calculations in three independent ways.
- Our present work (PRD **107** (2023) 094025) also found empirically reasonable values, for both Ansätze MMF and 3R, of the pion charge radius r_{π} and the slope parameter a of the transition form factor for small timelike momenta.
- We also calculated, for both considered quark propagator models, the $\pi^0 \gamma$ transition form factor $F_{\pi\gamma}(Q^2)$ up to 40 GeV².
- Our pion distribution amplitudes, especially the one from MMF Ansatz, are close to PDA obtained from state-of-the-art SDE pion bound state.

- [1] R. Alkofer, W. Detmold, C. Fischer, and P. Maris, "Analytic properties of the Landau gauge gluon and quark propagators," *Phys.Rev.* **D70** (2004) 014014, arXiv:hep-ph/0309077 [hep-ph].
- [2] C.S. Mello, J.P.B.C. de Melo, and T. Frederico, "Minkowski space pion model inspired by lattice QCD running quark mass", Phys. Lett. B 766, 86 (2017).
- [3] G. P. Lepage and S. J. Brodsky, "Exclusive processes in perturbative quantum chromodynamics," *Phys. Rev.* **D22** (1980) 2157.
- [4] S. J. Brodsky and G. P. Lepage, "Large Angle Two Photon Exclusive Channels in Quantum Chromodynamics," *Phys.Rev.* **D24** (1981) 1808.
- [5] P. K. Zweber, Precision measurements of the timelike electromagnetic form factors of the pion, kaon, and proton. PhD thesis, Northwestern U., 2006. arXiv:hep-ex/0605026 [hep-ex]. http://wwwlib.umi.com/dissertations/fullcit?p3212999.
- [6] R. J. Holt and C. D. Roberts, "Distribution Functions of the Nucleon and Pion in the Valence Region," *Rev.Mod.Phys.* **82** (2010) 2991–3044, arXiv:1002.4666 [nucl-th].