Wilsonian renormalization group flows are generated by ordinary distributions

*Class.Quant.Grav.***39**(2022)185004 and **arXiv:2303.03740**

András LÁSZLÓ

laszlo.andras@wigner.hun-ren.hu Wigner RCP, Budapest

Zimányi Winter School, 4 December 2023

Outline

Mathematics of Euclidean Feynman functional integral.

Mathematics of Wilsonian regularization.

Mathematics of Wilsonian renormalization.

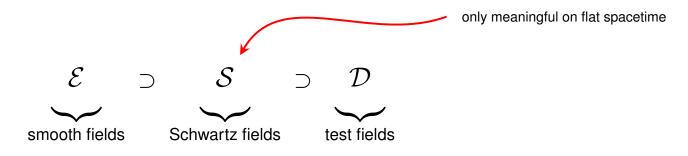
Recap on distribution theory

Will consider only scalar and bosonic fields for simplicity.

Will consider only flat (affine) spacetime manifold for simplicity.

- Solution of "open" sets
 Solution of "open" sets
 They form a vector space with a topology: $\varphi_i \in \mathcal{E} \ (i \in \mathbb{N}_0) \rightarrow 0$ iff all derivatives locally uniformly converge to zero.
- S : space of rapidly decreasing smooth fields (Schwartz fields) over spacetime. They form a vector space with a topology:
 φ_i ∈ S (i ∈ N₀) → 0 iff all derivatives uniformly converge to zero faster than polynomial.
- D : space of compactly supported smooth fields (test fields) over spacetime. They form a vector space with a topology:

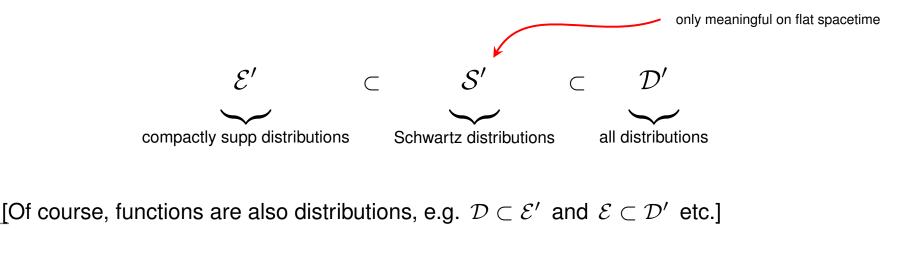
 $\varphi_i \in \mathcal{D}$ $(i \in \mathbb{N}_0) \to 0$ iff they stay within a compact set and $\to 0$ in \mathcal{E} sense.



Distributions are continuous duals of \mathcal{E} , \mathcal{S} , \mathcal{D} .

- \mathcal{E}' : continuous $\mathcal{E} \to \mathbb{R}$ linear functionals.
 They are the compactly supported distributions.
- S' : continuous $S \to \mathbb{R}$ linear functionals.
 They are the tempered or Schwartz distributions.
- \mathcal{D}' : continuous $\mathcal{D} \to \mathbb{R}$ linear functionals.
 They are the space of all distributions.

They carry a corresponding natural topology (notion of "open" sets).



Wilsonian renormalization group flows are generated by ordinary distributions -p. 4/47

Recap on measure / integration / probability theory

Let X be a set (their elements called elementary events).

- Let Σ be a collection of subsets of X such that:

 - for all A in Σ , their complement is in Σ .
 - for all countably infinite system $A_i \in \Sigma$ ($i \in \mathbb{N}_0$), their union $\bigcup_{i \in \mathbb{N}_0} A_i$ is in Σ.

Then, Σ is called a sigma-algebra (their elements called composite events). Typically, if X carries open sets (topology), the sigma-alg generated by them is taken.

$$\blacktriangleright$$
 Let $\mu: \Sigma \to \mathbb{R}_0^+$ be a set-function, such that:

•
$$\mu(\emptyset) = 0$$
,

■ for all countably infinite disjoint system $A_i \in \Sigma$ ($i \in \mathbb{N}_0$): $\mu(\bigcup_{i \in \mathbb{N}_0} A_i) = \sum_{i \in \mathbb{N}_0} \mu(A_i)$,

■ ∃ some countably infinite system $A_i \in \Sigma$ ($i \in \mathbb{N}_0$) with $\mu(A_i) < \infty$: $X = \bigcup_{i \in \mathbb{N}_0} A_i$. Then, μ is called a measure.

 (X, Σ, μ) is called a measure space. [E.g. probability measure space if $\mu(X) =$ finite.]

- A function $f: X \to \mathbb{C}$ is called measurable iff in good terms with mesure theory. Theorem: f is measurable iff approximable pointwise by "histograms" with bins from Σ .
- The integral $\int_{x \in X} f(x) d\mu(x)$ is defined via the histogram "area" approximations.
 Theorem: this is well-defined.
- Let (X.Σ, μ) be a measure space and (Y, Δ) an other one, with unspecified measure. Let C : X → Y be a measurable mapping. Then, one can define the pushforward (or marginal) measure C_{*} μ on Y.
 [For all B ∈ Δ one defines (C_{*} μ)(B) := μ(C⁻¹(B)).]
- Pushforward (marginal) measure means simply transformation of integration variable. If forgetful transformation, the "forgotten" d.o.f. are "integrated out".

• If
$$\mu$$
 is a probability measure, $M(y) := \int_{x \in X} e^{i(y|x)} d\mu(x)$ is its Fourier transform.

Mathematics of Euclidean Feynman functional integral

- Take an Euclidean action S = T + V, with kinetic + potential term splitting.
- Then, T has a propagator $K(\cdot, \cdot)$ which is positive definite: with notation $T(\varphi) = -\int \varphi \Box \varphi$, then K satisfies
 - $\square_x K(x,y) = \delta_y(x),$
 - for all $j \in S$ rapidly decreasing sources: $(K|j \otimes j) \ge 0$.
- **Due** to above, the function $S \to \mathbb{C}$, $j \mapsto e^{-(K|j \otimes j)}$ has "quite nice" properties.
- Bochner-Khinchin theorem: because of
 - "quite nice" properties of $j \mapsto e^{-(K|j \otimes j)}$,
 - "quite nice" properties of the space S,
 - $\exists \text{ a unique measure } \gamma_T \text{ on } \mathcal{S}', \text{ whose Fourier transform is } j \mapsto e^{-(K|j \otimes j)}.$ It is the Feynman measure for free theory: $\int_{\phi \in \mathcal{S}'} (\dots) \, \mathrm{d}\gamma_T(\phi) = \int_{\phi \in \mathcal{S}'} (\dots) \, e^{-T(\phi)} \, \mathrm{``d}\phi''.$
- One is tempted to define Feynman measure of the interacting theory via

$$\int_{\phi \in \mathcal{S}'} (\dots) e^{-V(\phi)} d\gamma_T(\phi) \qquad \left[= \int_{\phi \in \mathcal{S}'} (\dots) e^{-(T(\phi) + V(\phi))} d\phi'' \right]$$

Mathematics of Wilsonian regularization

Problem, the interacting Feynman measure $e^{-V} \gamma_T$ is undefined: $\int_{\phi \in \mathcal{S}'} (\dots) \qquad \underbrace{\mathrm{e}^{-V(\phi)}}_{\text{lines on function}}$ $\mathrm{d}\gamma_{T}\left(\phi\right)$

Because V is spacetime integral of pointwise product of fields, e.g. $V(\varphi) = \int \varphi^4$. How to bring e^{-V} and γ_{τ} to common grounds?

sense fields

lives on function lives on distribution

sense fields

Physicist solution: brute force, i.e. Wilsonian regularization. Take a continuous linear mapping C: (distributional fields) \rightarrow (function sense fields). Take the pushforward Gaussian measure $C_* \gamma_T$, which lives on the image space of C. Integrate e^{-V} against that:

$$\int_{\varphi \in \operatorname{Ran}(C)} (\dots) e^{-V(\varphi)} d(C_* \gamma_T)(\varphi) \qquad \left[= \int_{\varphi \in \operatorname{Ran}(C)} (\dots) e^{-(T_C(\varphi) + V(\varphi))} \, \text{``d}\varphi'' \right]$$

a space of UV regularized fields

[Schwartz kernel theorem: C is convolution by a test function, if translationally invariant. I.e., it is a momentum space damping, or coarse-graining of fields.]

Mathematics of Wilsonian renormalization

 \blacksquare What do we do with the C-dependence? What is the physics / mathematics behind?

Take a family V_C (C ∈ {coarse-grainings}) of interaction terms.
 We say that it is a Wilsonian renormalization group (RG) flow iff:
 ∃ some continuous functional z : {coarse-grainings} → ℝ, such that
 ∀ coarse-grainings C, C', C'' with C'' = C' C:
 z(C'')_{*} (e<sup>-V_C'' C''_{*}γ_T) is pushforward of z(C)_{*} (e^{-V_C} C_{*}γ_T) by C'.
 [z is called the running wave function renormalization factor.]
</sup>

If \$\mathcal{G}_C = (\mathcal{G}_C^{(0)}, \mathcal{G}_C^{(1)}, \mathcal{G}_C^{(2)}, \ldots)\$ are the moments of $e^{-V_C} C_* \gamma_T$, then
∃ some continuous functional $z : \{ \text{coarse-grainings} \} \rightarrow \mathbb{R}, \text{ such that}$ ∀ coarse-grainings C, C', C'' with C'' = C' C: $z(C'')^n \mathcal{G}_{C''}^{(n)} = z(C)^n \otimes^n C' \mathcal{G}_C^{(n)} \text{ for all } n = 0, 1, 2, \dots$

[Valid also in Lorentz signature and on manifolds, for formal moments (correlators).]

Theorem [A.L., Z.Tarcsay arXiv:2303.03740]: In case of any bosonic fields over flat spacetime, $\exists C$ -independent distributional correlator $G = (G^{(0)}, G^{(1)}, G^{(2)}, ...)$, such that $\mathcal{G}_C^{(n)} = z(C)^{-n} \otimes^n C G^{(n)}$ holds. [I.e., Wilsonian RG flow \leftrightarrow distribution.]

Summary

- Wilsonian RG flow of correlators can be defined in any signature and on manifolds.
- Under mild conditions, they originate from a distributional correlator (UV limit).
 [~ existence theorem for multiplicative renormalization.]
- Likely to be generically true (on manifolds, in any signature).

Backup slides

Followed guidelines

Do not use (unless emphasized):

- Structures specific to an affine spacetime manifold.
- Known fixed spacetime metric / causal structure.
- Known splitting of Lagrangian to free + interaction term.

Consequences:

- Cannot go to momentum space, have to stay in spacetime description.
- Cannot refer to any affine property of Minkowski spacetime, e.g. asymptotics. (No Schwartz functions.)
- Cannot use Wick rotation to Euclidean signature metric.
- Even if Wick rotated, no free + interaction splitting, so no Gaussian Feynman measure.
- Can only use generic, differential geometrically natural objects.

Outline

Will attempt to set up eom for the key ingredient for the quantum probability space of QFT.

- I. On Wilsonian regularized Feynman functional integral formulation:
 - Can be substituted by regularized master Dyson-Schwinger equation for correlators.
 - For conformally invariant or flat spacetime Lagrangians, showed an existence condition for regularized MDS solutions, provides convergent iterative solver method.

[Class.Quant.Grav.39(2022)185004]

- II. On Wilsonian renormalization group flows of correlators:
 - They form a topological vector space which is Hausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.
 - On flat spacetime for bosonic fields: in bijection with distributional correlators.

[arXiv:2303.03740 with Zsigmond Tarcsay]

Part I:

On Wilsonian regularized Feynman functional integral formulation

Wilsonian renormalization group flows are generated by ordinary distributions - p. 14/47

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 ${\cal M}\,$ a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet). $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$\underbrace{(v,\nabla)}_{=: \psi} \in \underbrace{\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M})))}_{=: \mathcal{E}}$$

Real topological affine space with the \mathcal{E} smooth function topology.

 \mathcal{M} a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet). $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$\underbrace{(v,\nabla)}_{=: \psi} \in \underbrace{\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M})))}_{=: \mathcal{E}}$$

Real topological affine space with the \mathcal{E} smooth function topology.

Field variations:

$$\underbrace{(\delta v, \delta C)}_{=: \delta \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M})\Big)}_{=: \mathcal{E}}$$

Real topological vector space with the \mathcal{E} smooth function topology.

 ${\cal M}\,$ a smooth orientable oriented manifold (wannabe spacetime, but no metric, yet).

 $V(\mathcal{M})$ a vector bundle over it (its smooth sections are matter fields + metric if dynamical).

Field configurations:

$$\underbrace{(v,\nabla)}_{=: \psi} \in \underbrace{\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M})))}_{=: \mathcal{E}}$$

Real topological affine space with the \mathcal{E} smooth function topology.

Field variations:

$$\underbrace{(\delta v, \delta C)}_{=: \delta \psi} \in \underbrace{\Gamma\Big(V(\mathcal{M}) \times_{\mathcal{M}} T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M})\Big)}_{=: \mathcal{E}}$$

Real topological vector space with the \mathcal{E} smooth function topology.

Test field variations: $\delta \psi_T \in \mathcal{D}$, compactly supported ones from \mathcal{E} with \mathcal{D} test funct. top.

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1, ..., J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1 | \psi - \psi_0) \cdot ... \cdot (J_n | \psi - \psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1, ..., J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1 | \psi - \psi_0) \cdot ... \cdot (J_n | \psi - \psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \ldots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi) / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi)$$

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1, ..., J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1 | \psi - \psi_0) \cdot ... \cdot (J_n | \psi - \psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \ldots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi) / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi)$$

Partition function often invoked to book-keep these (formal Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$):

$$Z_{\psi_0}: \quad \mathcal{E}' \longrightarrow \mathbb{C}, \quad J \longmapsto Z_{\psi_0}(J) := \int_{\psi \in \mathbf{\mathcal{E}}} e^{i (J|\psi - \psi_0)} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi),$$

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1, ..., J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1 | \psi - \psi_0) \cdot ... \cdot (J_n | \psi - \psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \ldots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi) / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi)$$

Partition function often invoked to book-keep these (formal Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$):

$$Z_{\psi_0}: \quad \mathcal{E}' \longrightarrow \mathbb{C}, \quad J \longmapsto Z_{\psi_0}(J) := \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{i (J|\psi - \psi_0)} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi),$$

and from this one can define

$$G_{\psi_0}^{(n)} := \left. \left((-\mathrm{i})^n \frac{1}{Z_{\psi_0}(J)} \,\partial_J^{(n)} Z_{\psi_0}(J) \right) \right|_{J=0}$$

 $n\text{-field correlator, and their collection } G_{\psi_0} := \left(G_{\psi_0}^{(0)}, G_{\psi_0}^{(1)}, ..., G_{\psi_0}^{(n)}, ...\right) \in \bigoplus_{n \in \mathbb{N}_0}^n \overset{n}{\otimes} \mathcal{E}.$

Fix a reference field $\psi_0 \in \mathcal{E}$ for bringing the problem from \mathcal{E} to \mathcal{E} , and take $J_1, ..., J_n \in \mathcal{E}'$. Then, $\psi \mapsto (J_1 | \psi - \psi_0) \cdot ... \cdot (J_n | \psi - \psi_0)$ defines a $\mathcal{E} \to \mathbb{R}$ polynomial observable.

Feynman type quantum vacuum expectation value of this is postulated as:

$$\int_{\psi \in \boldsymbol{\mathcal{E}}} (J_1 | \psi - \psi_0) \cdot \ldots \cdot (J_n | \psi - \psi_0) \quad e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi) / \int_{\psi \in \boldsymbol{\mathcal{E}}} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi)$$

Partition function often invoked to book-keep these (formal Fourier transform of $e^{\frac{1}{\hbar}S} \lambda$):

$$Z_{\psi_0}: \quad \mathcal{E}' \longrightarrow \mathbb{C}, \quad J \longmapsto Z_{\psi_0}(J) := \int_{\psi \in \mathbf{\mathcal{E}}} e^{i (J|\psi - \psi_0)} e^{\frac{i}{\hbar} S(\psi)} d\lambda(\psi),$$

and from this one can define

$$G_{\psi_0}^{(n)} := \left. \left((-\mathrm{i})^n \frac{1}{Z_{\psi_0}(J)} \,\partial_J^{(n)} Z_{\psi_0}(J) \right) \right|_{J=0}$$

n-field correlator, and their collection $G_{\psi_0} := \left(G_{\psi_0}^{(0)}, G_{\psi_0}^{(1)}, ..., G_{\psi_0}^{(n)}, ...\right) \in \bigoplus_{n \in \mathbb{N}_0}^n \overset{n}{\otimes} \mathcal{E}.$

_Above quantum expectation value expressable via distribution pairing: $(J_1 \otimes ... \otimes J_n \mid G_{\psi_0}^{(n)})$. ____

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{i}{\hbar}S} \lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{i}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if λ existed as *translation invariant* (Lebesgue) measure,
- as if $e^{\frac{i}{\hbar}S} \lambda$ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{i}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if λ existed as *translation invariant* (Lebesgue) measure,
- as if $e^{\frac{i}{\hbar}S}\lambda$ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

Textbook "theorem": because of above rules, one has

 $Z: \mathcal{E}' \to \mathbb{C}$ is Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$ " \iff " it satisfies master-Dyson-Schwinger eq

$$\left(\mathbf{E} \left((-\mathbf{i})\partial_J + \psi_0 \right) + \hbar J \right) Z(J) = 0 \quad (\forall J \in \mathcal{E}')$$

where $E(\psi) := DS(\psi)$ is the Euler-Lagrange functional at $\psi \in \mathcal{E}$.

- No "Lebesgue" measure λ in infinite dimensions.
- Neither $e^{\frac{i}{\hbar}S}\lambda$ is meaningful. (Can be repaired to some extent in Euclidean signature.)
- Neither the Fourier transform of this undefined measure is meaningful.

Rules in informal QFT:

- as if λ existed as *translation invariant* (Lebesgue) measure,
- as if $e^{\frac{i}{\hbar}S}\lambda$ existed as *finite measure*, with *finite moments* and *analytic Fourier transform*.

Textbook "theorem": because of above rules, one has

 $Z: \mathcal{E}' \to \mathbb{C}$ is Fourier transform of $e^{\frac{i}{\hbar}S} \lambda$ " \iff " it satisfies master-Dyson-Schwinger eq

$$\left(\mathbf{E} \left((-\mathbf{i})\partial_J + \psi_0 \right) + \hbar J \right) Z(J) = 0 \quad (\forall J \in \mathcal{E}')$$

where $E(\psi) := DS(\psi)$ is the Euler-Lagrange functional at $\psi \in \boldsymbol{\mathcal{E}}$.

Does this informal PDE have a meaning? [Yes, on the correlators $G = (G^{(0)}, G^{(1)}, ...)$.]

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

L: $V(\mathcal{M}) \oplus T^*(\mathcal{M}) \otimes V(\mathcal{M}) \oplus T^*(\mathcal{M}) \wedge T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M}) \longrightarrow \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$ pointwise bundle homomorphism.

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

L : $V(\mathcal{M}) \oplus T^*(\mathcal{M}) \otimes V(\mathcal{M}) \oplus T^*(\mathcal{M}) \wedge T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M}) \longrightarrow \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$ pointwise bundle homomorphism.

- Lagrangian expression:

$$\Gamma\big(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M}))\big) \longrightarrow \Gamma\big(\bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})\big), \quad (v, \nabla) \longmapsto \operatorname{L}(v, \nabla v, F(\nabla))$$

where $F(\nabla)$ is the curvature tensor.

Rigorous definition of Euler-Lagrange functional

- Let a Lagrange form be given, which is

L: $V(\mathcal{M}) \oplus T^*(\mathcal{M}) \otimes V(\mathcal{M}) \oplus T^*(\mathcal{M}) \wedge T^*(\mathcal{M}) \otimes V(\mathcal{M}) \otimes V^*(\mathcal{M}) \longrightarrow \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$ pointwise bundle homomorphism.

- Lagrangian expression:

 $\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M}))) \longrightarrow \Gamma(\bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})), \quad (v, \nabla) \longmapsto \operatorname{L}(v, \nabla v, F(\nabla))$ where $F(\nabla)$ is the curvature tensor.

- Action functional:

$$S: \underbrace{\Gamma(V(\mathcal{M}) \times_{\mathcal{M}} \operatorname{CovDeriv}(V(\mathcal{M})))}_{=: \mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \underbrace{(v, \nabla)}_{=: \psi} \longmapsto (\mathcal{K} \mapsto S_{\mathcal{K}}(v, \nabla))$$

where $S_{\mathcal{K}}(v, \nabla) := \int_{\mathcal{K}} L(v, \nabla v, F(\nabla))$ for all $\mathcal{K} \subset \mathcal{M}$ compact.

$$DS: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \, \big| \, \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$.

$$DS: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \, \big| \, \delta \psi \right) \right)$$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

 $DS: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \, \big| \, \delta \psi \right) \right)$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict DS from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

 $E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad \left(\psi, \, \delta \psi_T\right) \longmapsto \left(E(\psi) \, \big| \, \delta \psi_T\right) := \left(DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T\right)$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued.

 $DS: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \, \big| \, \delta \psi \right) \right)$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict *DS* from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

 $E: \quad \boldsymbol{\mathcal{E}} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad \left(\psi, \, \delta \psi_T\right) \longmapsto \left(E(\psi) \, \big| \, \delta \psi_T\right) := \left(DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T\right)$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. (Also, $E : \mathcal{E} \to \mathcal{D}'$ continuous.)

 $DS: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \, \big| \, \delta \psi \right) \right)$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict *DS* from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

 $E: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{D}} \longrightarrow \mathbb{R}, \quad \left(\psi, \, \delta \psi_T\right) \longmapsto \left(E(\psi) \, \big| \, \delta \psi_T\right) := \left(DS_{\mathcal{M}}(\psi) \, \big| \, \delta \psi_T\right)$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. (Also, $E : \mathcal{E} \to \mathcal{D}'$ continuous.)

Classical field equation is

$$\psi \in \boldsymbol{\mathcal{E}} ? \qquad \forall \, \delta \! \psi_T \in \mathcal{D} : \left(E(\psi) \, \middle| \, \delta \! \psi_T \right) = 0.$$

Action functional $S: \mathcal{E} \to Meas(\mathcal{M}, \mathbb{R})$ Fréchet differentiable, its Fréchet derivative

 $DS: \quad \boldsymbol{\mathcal{E}} \times \boldsymbol{\mathcal{E}} \longrightarrow \operatorname{Meas}(\mathcal{M}, \mathbb{R}), \quad (\psi, \delta \psi) \longmapsto \left(\mathcal{K} \mapsto \left(DS_{\mathcal{K}}(\psi) \, \big| \, \delta \psi \right) \right)$

is the usual Euler-Lagrange integral on \mathcal{K} + usual boundary integral on $\partial \mathcal{K}$. Jointly continuous in its variables, linear in second variable.

Euler-Lagrange functional:

We restrict *DS* from $\mathcal{E} \times \mathcal{E}$ to $\mathcal{E} \times \mathcal{D}$, to make the EL integral over full \mathcal{M} finite.

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad \left(\psi, \, \delta \psi_T\right) \longmapsto \left(E(\psi) \, \middle| \, \delta \psi_T\right) := \left(DS_{\mathcal{M}}(\psi) \, \middle| \, \delta \psi_T\right)$$

Bulk Euler-Lagrange integral remains, no boundary term. Meaningful on full \mathcal{M} , real valued. Jointly sequentially continuous, linear in second variable. (Also, $E : \mathcal{E} \to \mathcal{D}'$ continuous.)

Classical field equation is

$$\psi \in \boldsymbol{\mathcal{E}} ? \qquad \forall \, \delta \! \psi_T \in \mathcal{D} : \left(E(\psi) \, \middle| \, \delta \! \psi_T \right) = 0.$$

Observables are the $O : \mathcal{E} \to \mathbb{R}$ continuous maps.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = (G^{(0)}, G^{(1)}, ...)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}} \hat{\otimes}_{\pi}^{n} \mathcal{E}$ of field variations.

More precisely, they sit in a graded-symmetrized subspace, e.g. $V(\mathcal{E})$ or $\Lambda(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = (G^{(0)}, G^{(1)}, ...)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations.

More precisely, they sit in a graded-symmetrized subspace, e.g. $V(\mathcal{E})$ or $\Lambda(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = (G^{(0)}, G^{(1)}, ...)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations.

More precisely, they sit in a graded-symmetrized subspace, e.g. $V(\mathcal{E})$ or $\Lambda(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$. Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.
- Schwartz kernel thm gives some simplification: $\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n}$ and $\hat{\otimes}_{\pi}^{n} \mathcal{E}' \equiv \mathcal{E}'_{n}$ (*n*-variate).

- Want to rephrase informal MDS operator on Z to n-field correlators $G = (G^{(0)}, G^{(1)}, ...)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations. More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$.

Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.
- Schwartz kernel thm gives some simplification: $\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n}$ and $\hat{\otimes}_{\pi}^{n} \mathcal{E}' \equiv \mathcal{E}'_{n}$ (*n*-variate).
- One has $(\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ and $(\mathcal{T}(\mathcal{E}))'' \equiv \mathcal{T}(\mathcal{E})$ etc, "nice" properties. Moreover, tensor algebra of field variations is topological unital bialgebra.

- Want to rephrase informal MDS operator on Z to n-field correlators $G = (G^{(0)}, G^{(1)}, ...)$. These sit in the tensor algebra $\mathcal{T}(\mathcal{E}) := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}$ of field variations. More precisely, they sit in a graded-symmetrized subspace, e.g. $\bigvee(\mathcal{E})$ or $\bigwedge(\mathcal{E})$ of $\mathcal{T}(\mathcal{E})$.

Naturally topologized: with Tychonoff topology, similar to \mathcal{E} , i.e. nuclear Fréchet.

- Algebraic tensor algebra $\mathcal{T}_a(\mathcal{E}') := \bigoplus_{n \in \mathbb{N}_0} \hat{\otimes}_{\pi}^n \mathcal{E}'$ of sources. Naturally topologized: loc.conv. direct sum topology, similar to \mathcal{E}' , i.e. dual nuclear Fréchet.
- Schwartz kernel thm gives some simplification: $\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n}$ and $\hat{\otimes}_{\pi}^{n} \mathcal{E}' \equiv \mathcal{E}'_{n}$ (*n*-variate).
- One has $(\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ and $(\mathcal{T}(\mathcal{E}))'' \equiv \mathcal{T}(\mathcal{E})$ etc, "nice" properties. Moreover, tensor algebra of field variations is topological unital bialgebra.

Unity 1 := (1, 0, 0, 0, ...).

Left-multiplication L_x by a fix element x meaningful and continuous linear. Left-insertion \mathcal{L}_p (tracing out) by $p \in (\mathcal{T}(\mathcal{E}))' \equiv \mathcal{T}_a(\mathcal{E}')$ also meaningful, continuous linear. Usual graded-commutation: $(\mathcal{L}_p L_{\delta\psi} \pm L_{\delta\psi} \mathcal{L}_p) G = (p|\delta\psi) G$ ($\forall p \in \mathcal{E}', \ \delta\psi \in \mathcal{E}, \ G$). Take a classical observable $O: \mathcal{E} \to \mathbb{R}, \psi \mapsto O(\psi)$, let $O_{\psi_0} := O \circ (I_{\mathcal{E}} + \psi_0)$.

Take a classical observable $O: \mathcal{E} \to \mathbb{R}, \psi \mapsto O(\psi)$, let $O_{\psi_0} := O \circ (I_{\mathcal{E}} + \psi_0)$.

That is, $O_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} O(\psi) \quad (\forall \psi \in \boldsymbol{\mathcal{E}})$, with some fixed reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$.

Take a classical observable $O: \mathcal{E} \to \mathbb{R}, \psi \mapsto O(\psi)$, let $O_{\psi_0} := O \circ (I_{\mathcal{E}} + \psi_0)$.

That is, $O_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} O(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

We say that O is multipolynomial iff for some $\psi_0 \in \mathcal{E}$ there exists $\mathbf{O}_{\psi_0} \in \mathcal{T}_a(\mathcal{E}')$, such that

$$\forall \psi \in \boldsymbol{\mathcal{E}} : \underbrace{O_{\psi_0}(\psi - \psi_0)}_{= O(\psi)} = \left(\mathbf{O}_{\psi_0} \middle| (1, \overset{1}{\otimes} (\psi - \psi_0), \overset{2}{\otimes} (\psi - \psi_0), \ldots) \right).$$

That is, $E_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} E(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

That is, $E_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} E(\psi) \quad (\forall \psi \in \boldsymbol{\mathcal{E}})$, with some fixed reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$.

We say that *E* is multipolynomial iff $\exists \mathbf{E}_{\psi_0} \in \mathcal{T}_a(\mathcal{E}') \hat{\otimes}_{\pi} \mathcal{D}'$, such that

$$\forall \psi \in \boldsymbol{\mathcal{E}}, \, \delta \psi_T \in \mathcal{D}: \underbrace{\left(E_{\psi_0}(\psi - \psi_0) \, \middle| \, \delta \psi_T \right)}_{= \left(E(\psi) \, \middle| \, \delta \psi_T \right)} = \left(\mathbf{E}_{\psi_0} \, \middle| \, \left(1, \, \overset{1}{\otimes} (\psi - \psi_0), \, \overset{2}{\otimes} (\psi - \psi_0), \, \ldots \right) \otimes \delta \psi_T \right).$$

That is, $E_{\psi_0}(\psi - \psi_0) \stackrel{!}{=} E(\psi) \quad (\forall \psi \in \mathcal{E})$, with some fixed reference field $\psi_0 \in \mathcal{E}$.

We say that *E* is multipolynomial iff $\exists \mathbf{E}_{\psi_0} \in \mathcal{T}_a(\mathcal{E}') \hat{\otimes}_{\pi} \mathcal{D}'$, such that

$$\forall \psi \in \boldsymbol{\mathcal{E}}, \, \delta \psi_T \in \mathcal{D}: \underbrace{\left(E_{\psi_0}(\psi - \psi_0) \, \middle| \, \delta \psi_T \right)}_{= \left(E(\psi) \, \middle| \, \delta \psi_T \right)} = \left(\mathbf{E}_{\psi_0} \, \middle| \, \left(1, \, \overset{1}{\otimes} (\psi - \psi_0), \, \overset{2}{\otimes} (\psi - \psi_0), \, \ldots \right) \otimes \delta \psi_T \right).$$

For fixed $\delta \psi_T \in \mathcal{D}$ one has $(\mathbf{E}_{\psi_0} | \delta \psi_T) \in \mathcal{T}_a(\mathcal{E}')$, i.e. one can left-insert with it: $\mathcal{U}_{(\mathbf{E}_{\psi_0} | \delta \psi_T)}$ meaningfully acts on $\mathcal{T}(\mathcal{E})$. The master Dyson-Schwinger (MDS) equation is:

we search for (ψ_0, G_{ψ_0}) such that:

$$\underbrace{G_{\psi_0}^{(0)}}_{=: b \, G_{\psi_0}} = 1,$$

$$\forall \, \delta \! \psi_T \in \mathcal{D} : \underbrace{ \left(\begin{array}{cc} \mathcal{L}_{\left(\mathbf{E}_{\psi_0} \mid \delta \! \psi_T\right)} &- \mathrm{i} \, \hbar \, L_{\delta \! \psi_T} \end{array} \right) }_{=: \, \mathbf{M}_{\psi_0, \, \delta \! \psi_T}} G_{\psi_0} = 0.$$

The master Dyson-Schwinger (MDS) equation is:

we search for (ψ_0, G_{ψ_0}) such that:

$$\underbrace{G_{\psi_0}^{(0)}}_{=: b G_{\psi_0}} = 1,$$

$$\forall \, \delta \! \psi_T \in \mathcal{D} : \underbrace{ \left(\begin{array}{cc} \mathcal{L}_{\left(\mathbf{E}_{\psi_0} \mid \delta \! \psi_T\right)} &- \mathrm{i} \, \hbar \, L_{\delta \! \psi_T} \end{array} \right) }_{=: \, \mathbf{M}_{\psi_0, \delta \! \psi_T}} G_{\psi_0} = 0.$$

This substitutes Feynman functional integral formulation, signature independently. Also, no fixed background causal structure etc needed. The master Dyson-Schwinger (MDS) equation is:

we search for (ψ_0, G_{ψ_0}) such that:

$$\forall \, \delta \! \psi_T \in \mathcal{D} : \underbrace{ \left(\begin{array}{cc} \mathcal{L}_{\left(\mathbf{E}_{\psi_0} \mid \delta \! \psi_T\right)} &- \mathrm{i} \, \hbar \, L_{\delta \! \psi_T} \end{array} \right)}_{=: \, \mathbf{M}_{\psi_0, \delta \! \psi_T}} G_{\psi_0} = 0.$$

This substitutes Feynman functional integral formulation, signature independently. Also, no fixed background causal structure etc needed.

[Feynman type quantum vacuum expectation value of O is then $(\mathbf{O}_{\psi_0} | G_{\psi_0})$.]

Example: ϕ^4 model.

Example: ϕ^4 model.

Euler-Lagrange functional is

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \Box_y \psi(y) \, \mathbf{v}(y) \, + \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \psi^3(y) \, \mathbf{v}(y).$$

Example: ϕ^4 model.

Euler-Lagrange functional is

$$E: \quad \mathcal{E} \times \mathcal{D} \longrightarrow \mathbb{R}, \quad (\psi, \, \delta \psi_T) \longmapsto \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \Box_y \psi(y) \, \mathbf{v}(y) \, + \int_{y \in \mathcal{M}} \delta \psi_T(y) \, \psi^3(y) \, \mathbf{v}(y).$$

MDS operator at
$$\psi_0 = 0$$
 reads

$$\left(\mathbf{M}_{\psi_0,\delta\psi_T} \; G \right)^{(n)}(x_1, ..., x_n) = \int_{y \in \mathcal{M}} \delta\psi_T(y) \, \Box_y G^{(n+1)}(y, x_1, ..., x_n) \, \mathbf{v}(y) \; + \; \int_{y \in \mathcal{M}} \delta\psi_T(y) \, G^{(n+3)}(y, y, y, x_1, ..., x_n) \, \mathbf{v}(y)$$

$$-i\hbar n \frac{1}{n!} \sum_{\pi \in \Pi_n} \delta \psi_T(x_{\pi(1)}) G^{(n-1)}(x_{\pi(2)}, ..., x_{\pi(n)})$$

$$= (L_{\delta\psi_T} G)^{(n)}(x_1, \dots, x_n)$$

Pretty much well-defined, and clear recipe, if field correlators were *functions*.

Theorem: no solutions with high differentiability (e.g. as smooth functions).

Theorem: no solutions with high differentiability (e.g. as smooth functions). Theorem: for free Minkowski KG case, distributional solution only,

namely $G_{\psi_0} = \exp(K_{\psi_0})$, where

$$\begin{split} &K_{\psi_0}^{(0)} &= 0, \\ &K_{\psi_0}^{(1)} &= 0, \\ &K_{\psi_0}^{(2)} &= i\hbar \, \mathsf{K}_{\psi_0}^{(2)} & \longleftarrow \text{(symmetric propagator)} \\ &K_{\psi_0}^{(n)} &= 0 & (n \geq 2) \end{split}$$

So we expect distributional solutions only, at best.

Theorem: no solutions with high differentiability (e.g. as smooth functions). Theorem: for free Minkowski KG case, distributional solution only,

namely $G_{\psi_0} = \exp(K_{\psi_0})$, where

$$\begin{split} K^{(0)}_{\psi_0} &= 0, \\ K^{(1)}_{\psi_0} &= 0, \\ K^{(2)}_{\psi_0} &= i \hbar K^{(2)}_{\psi_0} & \longleftarrow \text{(symmetric propagator)} \\ K^{(n)}_{\psi_0} &= 0 & (n \ge 2) \end{split}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y, y, y, x_1, ..., x_n)$?

Theorem: no solutions with high differentiability (e.g. as smooth functions). Theorem: for free Minkowski KG case, distributional solution only,

namely $G_{\psi_0} = \exp(K_{\psi_0})$, where

$$\begin{split} K^{(0)}_{\psi_0} &= 0, \\ K^{(1)}_{\psi_0} &= 0, \\ K^{(2)}_{\psi_0} &= i \hbar K^{(2)}_{\psi_0} & \longleftarrow \text{(symmetric propagator)} \\ K^{(n)}_{\psi_0} &= 0 & (n \ge 2) \end{split}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y, y, y, x_1, ..., x_n)$? With sufficiency condition of H[']ormander? (Theorem: not workable.) Theorem: no solutions with high differentiability (e.g. as smooth functions). Theorem: for free Minkowski KG case, distributional solution only,

namely $G_{\psi_0} = \exp(K_{\psi_0})$, where

$$\begin{split} K^{(0)}_{\psi_0} &= 0, \\ K^{(1)}_{\psi_0} &= 0, \\ K^{(2)}_{\psi_0} &= i \hbar K^{(2)}_{\psi_0} & \longleftarrow \text{(symmetric propagator)} \\ K^{(n)}_{\psi_0} &= 0 & (n \ge 2) \end{split}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y, y, y, x_1, ..., x_n)$? With sufficiency condition of H[']ormander? (Theorem: not workable.) Via approximation with functions, i.e. sequential closure? (Theorem: not workable.) Theorem: no solutions with high differentiability (e.g. as smooth functions). Theorem: for free Minkowski KG case, distributional solution only,

namely $G_{\psi_0} = \exp(K_{\psi_0})$, where

$$\begin{split} K^{(0)}_{\psi_0} &= 0, \\ K^{(1)}_{\psi_0} &= 0, \\ K^{(2)}_{\psi_0} &= i \hbar K^{(2)}_{\psi_0} & \longleftarrow \text{(symmetric propagator)} \\ K^{(n)}_{\psi_0} &= 0 & (n \ge 2) \end{split}$$

So we expect distributional solutions only, at best.

How can one extend to distributions interaction term like $G^{(n+3)}(y, y, y, x_1, ..., x_n)$? With sufficiency condition of H[']ormander? (Theorem: not workable.) Via approximation with functions, i.e. sequential closure? (Theorem: not workable.) Workaround in QFT: Wilsonian regularization using coarse-graining (UV damping).

When \$\mathcal{E}\$ (resp \$\mathcal{D}\$) are smooth sections of some vector bundle, denote by \$\mathcal{E}^{\times}\$ (resp \$\mathcal{D}^{\times}\$) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \$\mathcal{D}^{\times \prime}\$ (resp \$\mathcal{E}^{\times \prime}\$).

- When \$\mathcal{E}\$ (resp \$\mathcal{D}\$) are smooth sections of some vector bundle, denote by \$\mathcal{E}^{\times}\$ (resp \$\mathcal{D}^{\times}\$) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \$\mathcal{D}^{\times \prime}\$ (resp \$\mathcal{E}^{\times \prime}\$).
- A continuous linear map $C: \mathcal{E}^{\times \prime} \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \iff$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.

- When \$\mathcal{E}\$ (resp \$\mathcal{D}\$) are smooth sections of some vector bundle, denote by \$\mathcal{E}^{\times}\$ (resp \$\mathcal{D}^{\times}\$) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \$\mathcal{D}^{\times \prime}\$ (resp \$\mathcal{E}^{\times \prime}\$).
- A continuous linear map $C: \mathcal{E}^{\times \prime} \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \iff$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.
- C_{κ} is properly supported iff $\forall \mathcal{K} \subset \mathcal{M}$ compact: $\kappa|_{\mathcal{M} \times \mathcal{K}}$ and $\kappa|_{\mathcal{K} \times \mathcal{M}}$ has compact support lit extends to $\mathcal{E}^{\times \prime}, \mathcal{E}, \mathcal{D}, \mathcal{D}^{\times \prime}$ and preserves compact support (the transpose similarly).

- When \$\mathcal{E}\$ (resp \$\mathcal{D}\$) are smooth sections of some vector bundle, denote by \$\mathcal{E}^{\times}\$ (resp \$\mathcal{D}^{\times}\$) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \$\mathcal{D}^{\times \prime}\$ (resp \$\mathcal{E}^{\times \prime}\$).
- A continuous linear map $C: \mathcal{E}^{\times \prime} \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \iff$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.
- C_{κ} is properly supported iff $\forall \mathcal{K} \subset \mathcal{M}$ compact: $\kappa|_{\mathcal{M} \times \mathcal{K}}$ and $\kappa|_{\mathcal{K} \times \mathcal{M}}$ has compact support lt extends to $\mathcal{E}^{\times \prime}, \mathcal{E}, \mathcal{D}, \mathcal{D}^{\times \prime}$ and preserves compact support (the transpose similarly).
- A properly supported smoothing operator is coarse-graining iff injective as *E*[×]' → *E* and its transpose similarly.
 E.g. ordinary convolution by a nonzero test function over affine (Minkowski) spacetime.

- When \$\mathcal{E}\$ (resp \$\mathcal{D}\$) are smooth sections of some vector bundle, denote by \$\mathcal{E}^{\times}\$ (resp \$\mathcal{D}^{\times}\$) the smooth sections of its densitized dual vector bundle. Then, distributional sections are \$\mathcal{D}^{\times \prime}\$ (resp \$\mathcal{E}^{\times \prime}\$).
- A continuous linear map $C: \mathcal{E}^{\times \prime} \to \mathcal{E}$ is called smoothing operator. Schwartz kernel theorem: $C \iff$ its Schwartz kernel κ which is section over $\mathcal{M} \times \mathcal{M}$.
- C_{κ} is properly supported iff $\forall \mathcal{K} \subset \mathcal{M}$ compact: $\kappa|_{\mathcal{M} \times \mathcal{K}}$ and $\kappa|_{\mathcal{K} \times \mathcal{M}}$ has compact support lt extends to $\mathcal{E}^{\times \prime}, \mathcal{E}, \mathcal{D}, \mathcal{D}^{\times \prime}$ and preserves compact support (the transpose similarly).
- A properly supported smoothing operator is coarse-graining iff injective as *E*[×]' → *E* and its transpose similarly.
 E.g. ordinary convolution by a nonzero test function over affine (Minkowski) spacetime.

Coarse-graining ops are natural generalization of convolution by test functions to manifolds.

Wilsonian regularized Feynman integral:

integrate only on the image space $C_{\kappa}[\mathcal{D}^{\times \prime}] \subset \mathcal{E}$ of some coarse-graining operator C_{κ} .

Wilsonian regularized Feynman integral:

integrate only on the image space $C_{\kappa}[\mathcal{D}^{\times \prime}] \subset \mathcal{E}$ of some coarse-graining operator C_{κ} .

Wilsonian regularized Feynman integral "> Wilsonian regularized MDS equation:

we search for $(\psi_0, \gamma(\kappa), \mathcal{G}_{\psi_0, \kappa})$ such that:

$$\underbrace{\mathcal{G}_{\psi_0,\kappa}^{(0)}}_{=: \ b \ \mathcal{G}_{\psi_0,\kappa}} = 1,$$

$$\forall \, \delta \! \psi_T \in \mathcal{D} : \qquad \underbrace{ \left(\begin{array}{cc} \mathcal{L}_{\gamma(\kappa) \, (\mathbf{E}_{\psi_0} \mid \delta \! \psi_T)} &- \mathrm{i} \, \hbar \, L_{C_{\kappa} \, \delta \! \psi_T} \end{array} \right) }_{=: \, \mathbf{M}_{\psi_0, \kappa, \delta \! \psi_T} } \mathcal{G}_{\psi_0, \kappa} = 0.$$

Wilsonian regularized Feynman integral:

integrate only on the image space $C_{\kappa}[\mathcal{D}^{\times \prime}] \subset \mathcal{E}$ of some coarse-graining operator C_{κ} .

Wilsonian regularized Feynman integral "

we search for $(\psi_0, \gamma(\kappa), \mathcal{G}_{\psi_0, \kappa})$ such that:

$$\underbrace{\mathcal{G}_{\psi_0,\kappa}^{(0)}}_{=: \ b \ \mathcal{G}_{\psi_0,\kappa}} = 1,$$

$$\forall \, \delta \! \psi_T \in \mathcal{D} : \qquad \underbrace{ \left(\begin{array}{cc} \mathcal{L}_{\gamma(\kappa) \, (\mathbf{E}_{\psi_0} \mid \delta \! \psi_T)} &- \mathrm{i} \, \hbar \, L_{C_{\kappa} \, \delta \! \psi_T} \end{array} \right) }_{=: \, \mathbf{M}_{\psi_0, \kappa, \delta \! \psi_T} } \mathcal{G}_{\psi_0, \kappa} = 0.$$

Brings back problem from distributions to smooth functions, but depends on regulator κ .

Smooth function solution to free KG regularized MDS eq: $\mathcal{G}_{\psi_0,\kappa} = \exp(\mathcal{K}_{\psi_0,\kappa})$ where

$$\begin{split} \mathcal{K}^{(0)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} &= i\hbar \, \mathsf{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{ (smoothed symmetric propagator)} \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} &= 0 & (n \ge 2) \end{split}$$

Smooth function solution to free KG regularized MDS eq: $\mathcal{G}_{\psi_0,\kappa} = \exp(\mathcal{K}_{\psi_0,\kappa})$ where

$$\begin{split} \mathcal{K}^{(0)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} &= i \hbar \, \mathsf{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} &= 0 & (n \ge 2) \end{split}$$

No problem to evaluate interaction term like $\mathcal{G}^{(n+3)}(y, y, y, x_1, ..., x_n)$ on functions.

Smooth function solution to free KG regularized MDS eq: $\mathcal{G}_{\psi_0,\kappa} = \exp(\mathcal{K}_{\psi_0,\kappa})$ where

$$\begin{split} \mathcal{K}^{(0)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} &= \mathrm{i}\,\hbar\,\mathrm{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} &= 0 & (n \ge 2) \end{split}$$

No problem to evaluate interaction term like $\mathcal{G}^{(n+3)}(y, y, y, x_1, ..., x_n)$ on functions.

[We proved a convergent iterative solution method at fix κ , see the paper or ask.]

Smooth function solution to free KG regularized MDS eq: $\mathcal{G}_{\psi_0,\kappa} = \exp(\mathcal{K}_{\psi_0,\kappa})$ where

$$\begin{split} \mathcal{K}^{(0)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(1)}_{\psi_0,\kappa} &= 0, \\ \mathcal{K}^{(2)}_{\psi_0,\kappa} &= \mathrm{i}\,\hbar\,\mathrm{K}^{(2)}_{\psi_0,\kappa} & \longleftarrow \text{(smoothed symmetric propagator)} \\ \mathcal{K}^{(n)}_{\psi_0,\kappa} &= 0 & (n \ge 2) \end{split}$$

No problem to evaluate interaction term like $\mathcal{G}^{(n+3)}(y, y, y, x_1, ..., x_n)$ on functions.

[We proved a convergent iterative solution method at fix κ , see the paper or ask.]

But what we do with κ dependence? (Rigorous Wilsonian renormalization?)

Part II:

On Wilsonian RG flows of correlators

Wilsonian renormalization group flows are generated by ordinary distributions - p. 29/47

Fix a reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$ to bring the problem from $\boldsymbol{\mathcal{E}}$ to $\boldsymbol{\mathcal{E}}$.

Fix a reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$ to bring the problem from $\boldsymbol{\mathcal{E}}$ to $\boldsymbol{\mathcal{E}}$.

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Fix a reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$ to bring the problem from $\boldsymbol{\mathcal{E}}$ to $\boldsymbol{\mathcal{E}}$.

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_\kappa}: \underbrace{C_\kappa[\mathcal{D}^{\times \prime}]}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_κ .

Fix a reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$ to bring the problem from $\boldsymbol{\mathcal{E}}$ to $\boldsymbol{\mathcal{E}}$.

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0, C_\kappa} : \underbrace{C_\kappa[\mathcal{D}^{\times \prime}]}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_κ .

Informally, one assumes a Lebesgue measure $\lambda_{C_{\kappa}}$ on each subspace $C_{\kappa}[\mathcal{D}^{\times \prime}]$ of \mathcal{E} . (In Euclidean signature this inexactness can be remedied by Gaussian measure.)

Fix a reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$ to bring the problem from $\boldsymbol{\mathcal{E}}$ to $\boldsymbol{\mathcal{E}}$.

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_{\kappa}}: \underbrace{C_{\kappa}[\mathcal{D}^{\times \prime}]}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_{κ} .

Informally, one assumes a Lebesgue measure $\lambda_{C_{\kappa}}$ on each subspace $C_{\kappa}[\mathcal{D}^{\times \prime}]$ of \mathcal{E} . (In Euclidean signature this inexactness can be remedied by Gaussian measure.)

This defines the Wilsonian regularized Feynman measure $e^{rac{i}{\hbar}S_{\psi_0,C_\kappa}}\lambda_{C_\kappa}$.

Fix a reference field $\psi_0 \in \boldsymbol{\mathcal{E}}$ to bring the problem from $\boldsymbol{\mathcal{E}}$ to $\boldsymbol{\mathcal{E}}$.

Fix a coarse-graining C_{κ} defining a UV regularization strength.

Assume that one has an action $S_{\psi_0,C_{\kappa}}: \underbrace{C_{\kappa}[\mathcal{D}^{\times \prime}]}_{\subset \mathcal{E}} \to \mathbb{R}$ for a coarse-graining C_{κ} .

Informally, one assumes a Lebesgue measure $\lambda_{C_{\kappa}}$ on each subspace $C_{\kappa}[\mathcal{D}^{\times \prime}]$ of \mathcal{E} . (In Euclidean signature this inexactness can be remedied by Gaussian measure.)

This defines the Wilsonian regularized Feynman measure $e^{rac{i}{\hbar}S_{\psi_0,C_\kappa}}\lambda_{C_\kappa}$.

A family of actions $S_{\psi_0,C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff: \forall coarse-grainings $C_{\kappa}, C_{\mu}, C_{\nu}$ with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $e^{\frac{i}{\hbar}S_{\psi_0,C_{\nu}}}\lambda_{C_{\nu}}$ is the pushforward of $e^{\frac{i}{\hbar}S_{\psi_0,C_{\kappa}}}\lambda_{C_{\kappa}}$ by C_{μ} . \leftarrow RGE

Rigorous definition will be this, but expressed on the formal moments (*n*-field correlators).

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff

 \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that

 $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^{n} C_{\mu} \, \mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \leftarrow rigorous RGE

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^{n}C_{\mu}\mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \leftarrow rigorous RGE

Space of Wilsonian RG flows is nonempty:

For any distributional correlator G, the family

$$\mathcal{G}_{C_{\kappa}}^{(n)} := \otimes^{n} C_{\kappa} G^{(n)}$$
(*)

is a Wilsonian RG flow.

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^{n}C_{\mu}\mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \leftarrow rigorous RGE

Space of Wilsonian RG flows is nonempty:

For any distributional correlator G, the family

$$\mathcal{G}_{C_{\kappa}}^{(n)} := \otimes^{n} C_{\kappa} G^{(n)}$$
(*)

is a Wilsonian RG flow.

Space of Wilsonian RG flows naturally topologized by coarse-graining-wise Tychonoff.

Definition:

A family of smooth correlators $\mathcal{G}_{C_{\kappa}}$ ($C_{\kappa} \in \text{coarse-grainings}$) is Wilsonian RG flow iff \forall coarse-grainings C_{κ} , C_{μ} , C_{ν} with $C_{\nu} = C_{\mu}C_{\kappa}$ one has that $\mathcal{G}_{C_{\nu}}^{(n)} = \otimes^{n}C_{\mu}\mathcal{G}_{C_{\kappa}}^{(n)}$ holds (n = 0, 1, 2, ...). \leftarrow rigorous RGE

Space of Wilsonian RG flows is nonempty:

For any distributional correlator G, the family

$$\mathcal{G}_{C_{\kappa}}^{(n)} := \otimes^{n} C_{\kappa} G^{(n)}$$
(*)

is a Wilsonian RG flow.

Space of Wilsonian RG flows naturally topologized by coarse-graining-wise Tychonoff.

Theorem[A.L., Z.Tarcsay]:

- 1. On manifolds it is Hausdorff, locally convex, complete, nuclear, semi-Montel, Schwartz.
- 2. On flat spacetime for bosonic fields, all Wilsonian RG flows are of the form of (*).

Sketch of proof for 1.:

- Coarse-grainings have a natural partial ordering of being less UV than an other: $C_{\nu} \leq C_{\kappa}$ iff $C_{\nu} = C_{\kappa}$ or $\exists C_{\mu} : C_{\nu} = C_{\mu}C_{\kappa}$.
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E})$.
- Check known properties of $\mathcal{T}(\mathcal{E})$, some of them are preserved by projective limit.

Sketch of proof for 1.:

- Coarse-grainings have a natural partial ordering of being less UV than an other: $C_{\nu} \leq C_{\kappa}$ iff $C_{\nu} = C_{\kappa}$ or $\exists C_{\mu} : C_{\nu} = C_{\mu}C_{\kappa}$.
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E})$.
- Check known properties of $\mathcal{T}(\mathcal{E})$, some of them are preserved by projective limit.

Sketch of proof for 2.:

- On flat spacetime, convolution ops by test functions $C_f := f \star (\cdot)$ exist and commute.
- Due to RGE, commutativity of convolution ops, and polarization formula for *n*-forms, for bosonic fields $\mathcal{G}_{C_f}^{(n)}$ is *n*-order homogeneous polynomial in *f*.

That is, one has corresponding $\mathcal{G}_{f_1,...,f_n}^{(n)}$ symmetric *n*-linear map in $f_1,...,f_n$.

- Due to RGE, commutativity of convolution ops, and an improved Banach-Steinhaus thm, $\mathcal{G}_{f_1^t,\dots,f_n^t}^{(n)}\Big|_0$ extends to an *n*-variate distribution, which will do the job.

Sketch of proof for 1.:

- Coarse-grainings have a natural partial ordering of being less UV than an other: $C_{\nu} \leq C_{\kappa}$ iff $C_{\nu} = C_{\kappa}$ or $\exists C_{\mu} : C_{\nu} = C_{\mu}C_{\kappa}$.
- With this, the space of Wilsonian RG flows is seen to be projective limit of copies of $\mathcal{T}(\mathcal{E})$.
- Check known properties of $\mathcal{T}(\mathcal{E}),$ some of them are preserved by projective limit.

Sketch of proof for 2.:

- On flat spacetime, convolution ops by test functions $C_f := f \star (\cdot)$ exist and commute.
- Due to RGE, commutativity of convolution ops, and polarization formula for *n*-forms, for bosonic fields $\mathcal{G}_{C_f}^{(n)}$ is *n*-order homogeneous polynomial in *f*.

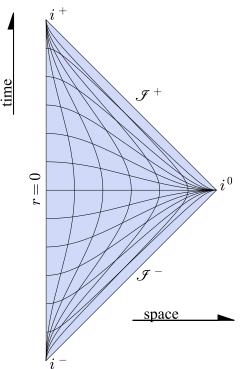
That is, one has corresponding $\mathcal{G}_{f_1,...,f_n}^{(n)}$ symmetric *n*-linear map in $f_1,...,f_n$.

- Due to RGE, commutativity of convolution ops, and an improved Banach-Steinhaus thm, $\mathcal{G}_{f_1^t,\ldots,f_n^t}^{(n)}\Big|_0$ extends to an *n*-variate distribution, which will do the job.

An improved Banach-Steinhaus theorem (the key lemma – A.L., Z.Tarcsay): If a sequence of *n*-variate distributions pointwise converge on $\otimes^n \mathcal{D}$, it does also on full \mathcal{D}_n . Therefore, by ordinary Banach-Steinhaus thm, the limit is an *n*-variate distribution.

Existence condition for regularized MDS solutions

If Euler-Lagrange functional $E: \mathcal{E} \to \mathcal{D}'$ conformally invariant: re-expressable on Penrose conformal compactification.



That is always a compact manifold, with cone condition boundary.

 $E: \mathcal{E} \to \mathcal{D}'$ reformulable over this base manifold.

 $F_0 \supset F_1 \supset \ldots \supset F_m \supset \ldots \supset \mathcal{E}$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

 $F_0 \supset F_1 \supset \ldots \supset F_m \supset \ldots \supset \mathcal{E}$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin, Hennings: P.RIMS25(1989)971]:

without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

 $H_0 \supset H_1 \supset \ldots \supset H_m \supset \ldots \supset \mathcal{T}_h(\mathcal{E})$

 $F_0 \supset F_1 \supset \ldots \supset F_m \supset \ldots \supset \mathcal{E}$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin, Hennings: *P.RIMS*25(1989)971]:

without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

 $H_0 \supset H_1 \supset \ldots \supset H_m \supset \ldots \supset \mathcal{T}_h(\mathcal{E})$

Regularized MDS operator is then a Hilbert-Schmidt linear map

$$\mathbf{M}_{\psi_0,\kappa}: \quad H_m \otimes F_m \longrightarrow H_0, \quad \mathcal{G} \otimes \delta \psi_T \longmapsto \mathbf{M}_{\psi_0,\kappa,\delta \psi_T} \mathcal{G}$$

 $F_0 \supset F_1 \supset \ldots \supset F_m \supset \ldots \supset \mathcal{E}$

(Intersection of shrinking Hilbert spaces F_m with Hilbert-Schmidt embedding.)

Theorem [Dubin,Hennings:P.RIMS25(1989)971]:

without penalty, one can equip $\mathcal{T}(\mathcal{E})$ with a better topology, inheriting CHNF topology.

 $H_0 \supset H_1 \supset \ldots \supset H_m \supset \ldots \supset \mathcal{T}_h(\mathcal{E})$

Regularized MDS operator is then a Hilbert-Schmidt linear map

$$\mathbf{M}_{\psi_0,\kappa}: \quad H_m \otimes F_m \longrightarrow H_0, \quad \mathcal{G} \otimes \delta \psi_T \longmapsto \mathbf{M}_{\psi_0,\kappa,\delta \psi_T} \mathcal{G}$$

Theorem: one can legitimately trace out $\delta \psi_T$ variable to form

$$\hat{\mathbf{M}}^2_{\psi_0,\kappa}: \quad H_m \longrightarrow H_m, \quad \mathcal{G} \longmapsto \sum_{i \in \mathbb{N}_0} \mathbf{M}^{\dagger}_{\psi_0,\kappa,\delta\psi_T i} \mathbf{M}_{\psi_0,\kappa,\delta\psi_T i} \mathcal{G}$$

(i) the iteration

$$\mathcal{G}_0 := 1$$
 and $\mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}_{\psi_0,\kappa}^2 \mathcal{G}_l$ $(l = 0, 1, 2, ...)$

is always convergent if $T > \text{ trace norm of } \hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

(i) the iteration

$$\mathcal{G}_0 := 1$$
 and $\mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l$ $(l = 0, 1, 2, ...)$

is always convergent if $T > \text{ trace norm of } \hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

(ii) the κ -regularized MDS solution space is nonempty iff

$$\lim_{l\to\infty} b\,\mathcal{G}_l \neq 0.$$

(i) the iteration

$$\mathcal{G}_0 := 1$$
 and $\mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l$ $(l = 0, 1, 2, ...)$

is always convergent if $T > \text{ trace norm of } \hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

(ii) the κ -regularized MDS solution space is nonempty iff

$$\lim_{l\to\infty} b\,\mathcal{G}_l \neq 0.$$

(iii) and in this case

$$\lim_{l\to\infty}\mathcal{G}_l$$

is an MDS solution, up to normalization factor.

(i) the iteration

$$\mathcal{G}_0 := 1$$
 and $\mathcal{G}_{l+1} := \mathcal{G}_l - \frac{1}{T} \hat{\mathbf{M}}^2_{\psi_0,\kappa} \mathcal{G}_l$ $(l = 0, 1, 2, ...)$

is always convergent if $T > \text{ trace norm of } \hat{\mathbf{M}}^2_{\psi_0,\kappa}$.

(ii) the κ -regularized MDS solution space is nonempty iff

$$\lim_{l\to\infty} b\,\mathcal{G}_l \neq 0.$$

(iii) and in this case

$$\lim_{l\to\infty}\mathcal{G}_l$$

is an MDS solution, up to normalization factor.

Use for lattice-like numerical method in Lorentz signature? (Treatment can be adapted to flat spacetime also, because Schwartz functions are CHNF.)

Structure of model building in fundamental physics

Relativistic or non-relativistic point mechanics:

- Take Newton equation over a fixed spacetime and fixed potentials.
- Solution space to the equation turns out to be a symplectic manifold.
- One can play classical probability theory on the solution space:
 - **\square** Elements of solution space X are elementary events.
 - Collection of Borel sets Σ of X are composite events.
 - A state is a probability measure W on Σ , i.e. (X, Σ, W) is classical probability space.

Relativistic or non-relativistic quantum mechanics:

- Take Dirac etc. equation over a fixed spacetime and fixed potentials.
- Finite charge weak solution space to the equation turns out to be a Hilbert space.
- One can play quantum probability theory on the solution space:
 - One dimensional subspaces of the solution space \mathcal{H} are elementary events, X.
 - Collection of all closed subspaces Σ of \mathcal{H} are composite events.
 - A state is a probability measure W on Σ , i.e. (X, Σ, W) is quantum probability space.

Fréchet derivative in top.vector spaces

Let F and G real top.affine space, Hausdorff. Subordinate vector spaces: \mathbb{F} and \mathbb{G} .

A map $S : F \to G$ is Fréchet-Hadamard differentiable at $\psi \in F$ iff: there exists $DS(\psi) : \mathbb{F} \to \mathbb{G}$ continuous linear, such that for all sequence $n \mapsto h_n$ in \mathbb{F} , and nonzero sequence $n \mapsto t_n$ in \mathbb{R} which converges to zero,

$$(\mathbb{G})_{n \to \infty} \left(\frac{S(\psi + t_n h_n) - S(\psi)}{t_n} - DS(\psi) h_n \right) = 0$$

holds.

Fréchet derivative of action functional

Distributions on manifolds

 $W(\mathcal{M})$ vector bundle, $W^{\times}(\mathcal{M}) := W^*(\mathcal{M}) \otimes \bigwedge^{\dim(\mathcal{M})} T^*(\mathcal{M})$ its densitized dual. $W^{\times \times}(\mathcal{M}) \equiv W(\mathcal{M}).$

Correspondingly: \mathcal{E}^{\times} and \mathcal{D}^{\times} are densitized duals of \mathcal{E} and \mathcal{D} .

$$\begin{split} \mathcal{E}\times\mathcal{D}^{\times}\to\mathbb{R},\, (\delta\!\psi,p_{_{T}})\mapsto \int\limits_{\mathcal{M}}\delta\!\psi\,p_{_{T}} \text{ and } \mathcal{D}\times\mathcal{E}^{\times}\to\mathbb{R},\, (\delta\!\psi_{_{T}},p)\mapsto \int\limits_{\mathcal{M}}\delta\!\psi_{_{T}}\,p \text{ jointly sequentially continuous.} \end{split}$$

Therefore, continuous dense linear injections $\mathcal{E} \to \mathcal{E}^{\times \prime}$ and $\mathcal{D} \to \mathcal{D}^{\times \prime}$. (hance the name, distributional sections)

Let $A: \mathcal{E} \to \mathcal{E}$ continuous linear.

It has formal transpose iff there exists $A^t : \mathcal{D}^{\times} \to \mathcal{D}^{\times}$ continuous linear, such that $\forall \delta \psi \in \mathcal{E} \text{ and } p_T \in \mathcal{D}^{\times} : \int_{\mathcal{M}} (A \, \delta \psi) \, p_T = \int_{\mathcal{M}} \delta \psi \, (A^t \, p_T).$

Topological transpose of formal transpose $(A^t)' : (\mathcal{D}^{\times})' \to (\mathcal{D}^{\times})'$ is the distributional extension of A. Not always exists.

Fundamental solution on manifolds

Let $E: \mathcal{E} \times \mathcal{D} \to \mathbb{R}$ be Euler-Lagrange functional, and $J \in \mathcal{D}'$.

 $\mathsf{K}_{(J)} \in \boldsymbol{\mathcal{E}} \text{ is solution with source } J, \text{ iff } \forall \delta \psi_T \in \mathcal{D}: \ (E(\mathsf{K}_{(J)}) \,|\, \delta \psi_T) = (J | \delta \psi_T).$

Specially: one can restrict to $J \in \mathcal{D}^{\times} \subset \mathcal{E}^{\times} \subset \mathcal{D}'$.

A continuous map $K : \mathcal{D}^{\times} \to \mathcal{E}$ is fundamental solution, iff for all $J \in \mathcal{D}^{\times}$ the field $K(J) \in \mathcal{E}$ is solution with source J.

May not exists, and if does, may not be unique.

If $K_{\psi_0} : \mathcal{D}^{\times} \to \mathcal{E}$ vectorized fundamental solution is linear (e.g. for linear $E_{\psi_0} : \mathcal{E} \to \mathcal{D}'$): $K_{\psi_0} \in \mathcal{L}in(\mathcal{D}^{\times}, \mathcal{E}) \subset (\mathcal{D}^{\times})' \otimes (\mathcal{D}^{\times})'$ is distribution.

Particular solutions to the free MDS equation

Distributional solutions to free MDS equation: $G_{\psi_0} = \exp(K_{\psi_0})$ where

$$\begin{split} K^{(0)}_{\psi_0} &= 0, \\ K^{(1)}_{\psi_0} &= 0, \\ K^{(2)}_{\psi_0} &= i\hbar \, \mathsf{K}^{(2)}_{\psi_0} \\ K^{(n)}_{\psi_0} &= 0 \qquad (n \geq 2) \end{split}$$

Smooth function solutions to free regularized MDS equation: $G_{\psi_0} = \exp(K_{\psi_0,\kappa})$ where

$$\begin{aligned} K_{\psi_{0},\kappa}^{(0)} &= 0, \\ K_{\psi_{0},\kappa}^{(1)} &= 0, \\ K_{\psi_{0},\kappa}^{(2)} &= i\hbar (C_{\kappa} \otimes C_{\kappa}) \mathsf{K}_{\psi_{0}}^{(2)} \\ K_{\psi_{0},\kappa}^{(n)} &= 0 \qquad (n \ge 2) \end{aligned}$$

[Here $C_{\kappa}(\cdot) := \eta \star (\cdot)$ is convolution by a test function η .]

Renormalization from functional analysis p.o.v.

Let \mathbb{F} and \mathbb{G} real or complex top.vector space, Hausdorff loc.conv complete.

Let $M : \mathbb{F} \to \mathbb{G}$ densely defined linear map (e.g. MDS operator).

Closed: the graph of the map is closed.

Closable: there exists linear extension, such that its graph closed (unique if exists).

Closable \Leftrightarrow where extendable with limits, it is unique.

Multivalued set:

 $\operatorname{Mul}(M) := \big\{ y \in \mathbb{G} \, \big| \, \exists \, (x_n)_{n \in \mathbb{N}} \text{ in } \operatorname{Dom}(M) \text{ such that } \lim_{n \to \infty} x_n = 0 \text{ and } \lim_{n \to \infty} M x_n = y \big\}.$

Mul(M) always closed subspace.

 $\mathsf{Closable} \Leftrightarrow \mathrm{Mul}(M) = \{0\}.$

Maximally non-closable \Leftrightarrow Mul $(M) = \overline{\text{Ran}(M)}$. Pathological, not even closable part.

Polynomial interaction term of MDS operator maximally non-closable!

MDS operator:

$$\mathbf{M}: \quad \mathcal{D} \otimes \mathcal{T}(\mathcal{E}) \to \mathcal{T}(\mathcal{E}), \quad G \mapsto \mathbf{M} G$$

linear, everywhere defined continuous. So,

$$\mathbf{M}: \quad \mathcal{T}(\mathcal{D}^{\times \prime}) \rightarrowtail \mathcal{D}' \otimes \mathcal{T}(\mathcal{D}^{\times \prime}), \quad G \mapsto \mathbf{M} G$$

linear, densely defined.

Similarly: M_{κ} regularized MDS operator (κ : a fix regularizator).

Not good equation:

 $G \in \mathcal{T}(\mathcal{D}^{\times \prime})$? $G^{(0)} = 1$ and $\exists \mathcal{G}_{\kappa} \to G$ approximator sequence, such that : $\lim_{\kappa \to \delta} \mathbf{M} \, \mathcal{G}_{\kappa} = 0.$

All G would be selected, because Mul() set of interaction term is full space.

Not good equation:

 $G \in \mathcal{T}(\mathcal{D}^{\times \prime})$? $G^{(0)} = 1$ and $\exists \mathcal{G}_{\kappa} \to G$ approximator sequence, such that : $\lim_{\kappa \to \delta} \mathbf{M}_{\kappa} \, \mathcal{G}_{\kappa} = 0.$

All G would be selected, because Mul() set of interaction term is full space.

Can be good:

 $G \in \mathcal{T}(\mathcal{D}^{\times \prime})$? $G^{(0)} = 1$ and $\exists \mathcal{G}_{\kappa} \to G$ approximator sequence, such that : $\forall \kappa : \mathbf{M}_{\kappa} \mathcal{G}_{\kappa} = 0.$

That is, as implicit function of κ , not as operator closure kernel.

Running coupling: If in \mathbf{M}_{κ} EL terms are combined with κ -dependent weights $\gamma(\kappa)$. (Not just with real factors.) E.g.:

 $(\gamma, G) \in \mathcal{T}(\mathcal{D}^{\times \prime})$? $G^{(0)} = 1$ and $\exists \mathcal{G}_{\kappa} \to G$ approximator sequence, such that : $\forall \kappa : \mathbf{M}_{\gamma(\kappa),\kappa} \mathcal{G}_{\kappa} = 0.$ Feynman integral " \iff " MDS equation.

Wilsonian regularized Feynman integral:

integrate not on \mathcal{E} , only on the image space $C_{\kappa}[\mathcal{E}]$ of a smoothing operator $C_{\kappa}: \mathcal{E} \to \mathcal{E}$.

[Smoothing operator: \sim convolution, can be generalized to manifolds. Does UV damping.] Automatically knows RGE relations.

Wilsonian regularized Feynman integral "

$$\begin{split} \begin{split} & \left[\psi_{0}, \kappa \mapsto \gamma(\kappa), \kappa \mapsto \mathcal{G}_{\psi_{0}, \kappa} \right) \ = ? \text{ such that } : \qquad \underbrace{\mathcal{G}_{\psi_{0}, \kappa}^{(0)}}_{=: b \, \mathcal{G}_{\psi_{0}, \kappa}} \ = \ 1, \\ & =: b \, \mathcal{G}_{\psi_{0}, \kappa} \end{split} = \ 1, \\ & =: b \, \mathcal{G}_{\psi_{0}, \kappa} \end{split} = \ 0, \\ & =: \mathbf{M}_{\psi_{0}, \kappa, \delta \psi_{T}} \end{split} \\ & \mathsf{RGE} \longrightarrow \qquad \forall \mu, \kappa : \quad \mathcal{G}_{\psi_{0}, (C_{\mu} \kappa)}^{(n)} \ = \ (\otimes^{n} C_{\mu}) \, \mathcal{G}_{\psi_{0}, \kappa}^{(n)} \end{split}$$

Running coupling is meaningful. Conjecture: RG flow of $\mathcal{G}_{\psi_0,\kappa} \leftrightarrow$ distributional G_{ψ_0} . (Conjecture proved for flat spacetime for bosonic fields.)

Some complications on topological vector spaces

Careful with tensor algebra! Schwartz kernel theorems:

$$\hat{\otimes}_{\pi}^{n} \mathcal{E} \equiv \mathcal{E}_{n} \equiv (\hat{\otimes}_{\pi}^{n} \mathcal{E}')' \equiv \mathcal{L}in(\mathcal{E}', \hat{\otimes}_{\pi}^{n-1} \mathcal{E})$$

$$(\hat{\otimes}_{\pi}^{n}\mathcal{E})' \equiv \mathcal{E}'_{n} \equiv \hat{\otimes}_{\pi}^{n}\mathcal{E}' \equiv \mathcal{L}in(\mathcal{E},\hat{\otimes}_{\pi}^{n-1}\mathcal{E}')$$

$$\hat{\otimes}_{\pi}^{n} \mathcal{D} \qquad \leftarrow \qquad \mathcal{D}_{n} \equiv (\hat{\otimes}_{\pi}^{n} \mathcal{D}')'$$

cont.bij.

 $(\hat{\otimes}_{\pi}^{n}\mathcal{D})' \longrightarrow \mathcal{D}'_{n} \equiv \hat{\otimes}_{\pi}^{n}\mathcal{D}' \equiv \mathcal{L}in(\mathcal{D}, \hat{\otimes}_{\pi}^{n-1}\mathcal{D}')$

 $\mathcal{E} \times \mathcal{E} \rightarrow F$ separately continuous maps are jointly continuous.

 $\mathcal{E}' \times \mathcal{E}' \to F$ separately continuous bilinear maps are jointly continuous.

For mixed, no guarantee.

For \mathcal{D} or \mathcal{D}' spaces, joint continuity from separate continuity of bilinear forms not automatic. For mixed, even less guarantee.

But as convergence vector spaces, everything is nice with mixed $\mathcal{E}, \mathcal{E}', \mathcal{D}, \mathcal{D}'$ multilinears (separate sequential continuity \Leftrightarrow joint sequential continuity).