### LATTICE QCD AT NON-ZERO BARYON DENSITY

#### **Attila Pásztor**

ELTE Eötvös Loránd University, Budapest and HUN-REN-ELTE Theoretical Physics Research Group (Wuppertal-Budapest collaboration)

Zimányi School 2023, Budapest

# Outline

1) QCD in the grand canonical ensemble and the sign problem

2) The phase diagram

3) The search for Ising criticality at  $\mu_B$ >0 and fluctuations

4) The equation of state of a hot-and-dense QGP and O(4) criticality

5) Summary and outlook

## Why should heavy ion physicists care?

#### FULLY NON-PERTURBATIVE RESULTS IN FULL QCD ARE VALUEABLE



# The lattice formulation of QCD

Finite space-time lattice:  $N_s^3 N_t$ 

Equilibrium physics:  $T = \frac{1}{N_t a}$ 

#### <u>1. Continuum limit</u>:

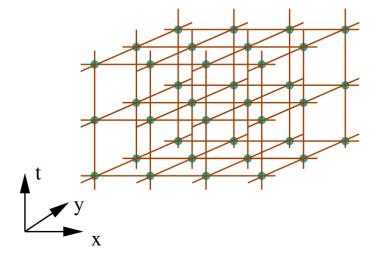
For fixed temperature  $a \rightarrow 0 \Leftrightarrow N_t \rightarrow \infty$ (Fixed  $N_t$ : Lower  $T \Rightarrow$  Larger a (coarser))

#### 2. Thermodynamic limit:

Size is often measured in units of 1/TAspect ratio:  $LT = N_s/N_t$ 

Infinite volume limit:  $LT \rightarrow \infty$ 

QCD in a small box is physics, a coarse lattice in a large box is not!



## QCD in the grand canonical ensemble

$$\hat{p} \coloneqq \frac{p}{T^4} = \frac{1}{(LT)^3} \log \operatorname{Tr} \left( e^{-(H - \mu_B B - \mu_S S)/T} \right) \quad \text{(dimensionless pressure)}$$

$$\chi_{ij}^{BS} = \frac{\partial^{i+j}\hat{p}}{\partial\hat{\mu}_B^i\partial\hat{\mu}_S^j} \qquad \qquad \left(\hat{\mu}_{B/S} \coloneqq \frac{\mu_{B/S}}{T}\right) \quad \text{(generalized susceptibilities)}$$

#### DERIVATIVES $\Leftrightarrow$ FLUCTUATIONS/CORRELATIONS: $\chi_1^B \propto \langle B \rangle \propto n_B; \quad \chi_2^B \propto \langle B^2 \rangle - \langle B \rangle^2; \quad \chi_{11}^{BS} \propto \langle BS \rangle - \langle B \rangle \langle S \rangle$

# The QCD path integral

 $Z = \int DA_{\mu} D\overline{\psi} D\psi e^{-S_{YM} - \overline{\psi} M(A_{\mu}, m, \mu)\psi} = \int DA_{\mu} \det M(A_{\mu}, m, \mu) e^{-S_{YM}}$ 

Can be simulated with Monte Carlo if det $M e^{-S_{YM}}$  is real and positive:

- zero chemical potential  $\mu=0$
- purely imaginary chemical potential  $Re(\mu) = 0$
- isospin chemical potential  $\mu_u = -\mu_d$

Otherwise: complex action/sign problem

 $\Rightarrow$  desperate times, desperate measures

## Lattice QCD at nonzero baryon density

Analytic continuation (ver. 1): Imaginary chemical potential method

Calculate  $\langle O \rangle$  at Im $\mu_B$  ( $\mu_B^2 < 0$ ), extrapolate to  $\mu_B^2 > 0$ 

Analytic continuation (ver. 2): Taylor method

Calculate 
$$\frac{\partial^n}{\partial \mu_B^n} \langle O \rangle$$
 at  $\mu_B = 0$ , extrapolate

#### Reweighting:

Simulate a different theory, correct the Boltzmann weight in observable

While <u>cut-off</u> and <u>volume</u> effects are important for every lattice result, for  $\mu_B > 0$  the way we <u>extrapolate</u> is also an important point of quality control



С

0

# Outline

1) QCD in the grand canonical ensemble and the sign problem

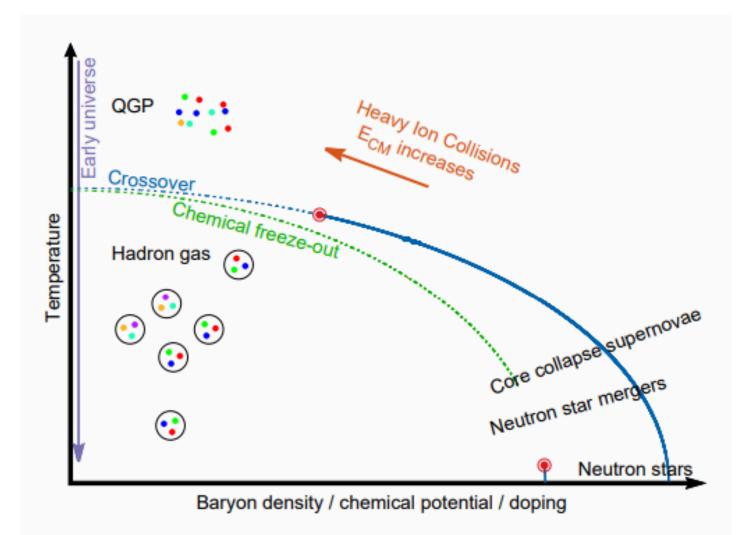
2) The phase diagram

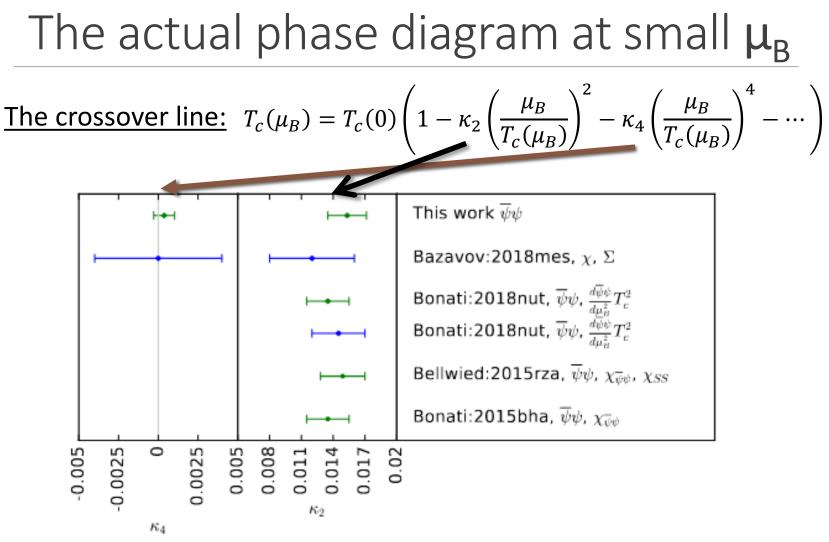
3) The search for Ising criticality at  $\mu_B$ >0 and fluctuations

4) The equation of state of a hot-and-dense QGP and O(4) criticality

5) Summary and outlook

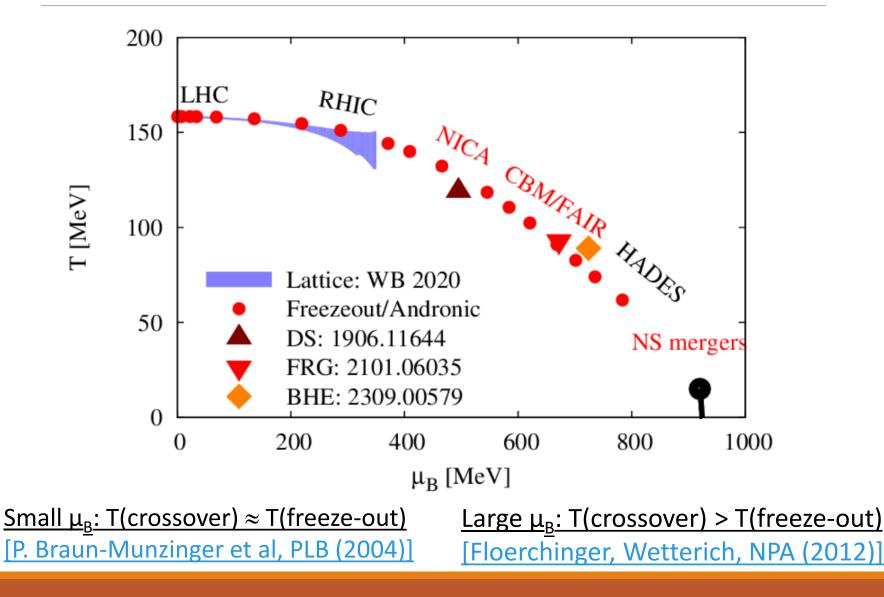
# The conjectured phase diagram





[Wuppertal-Budapest, PRL125 (2020)]: continuum,  $n_S = 0$ , LT = 4 $\mu_B > 0$  quantities with very good quality control!

### The crossover line vs chemical freeze-out (CFO)



# Outline

1) QCD in the grand canonical ensemble and the sign problem

2) The phase diagram

#### 3) The search for Ising criticality at $\mu_B > 0$ and fluctuations

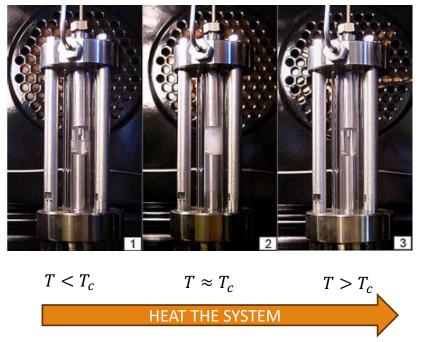
4) The equation of state of a hot-and-dense QGP and O(4) criticality

5) Summary and outlook

12

## One way: fluctuations

#### Experiment: tune to criticality



Picture from Wikipedia

#### Lattice/Taylor: try to see it from far away

$$\chi_n^B = \left(\frac{\partial^n \hat{p}}{\partial \hat{\mu}_B^n}\right)_{\mu_B = 0}$$

To as large n as possible...

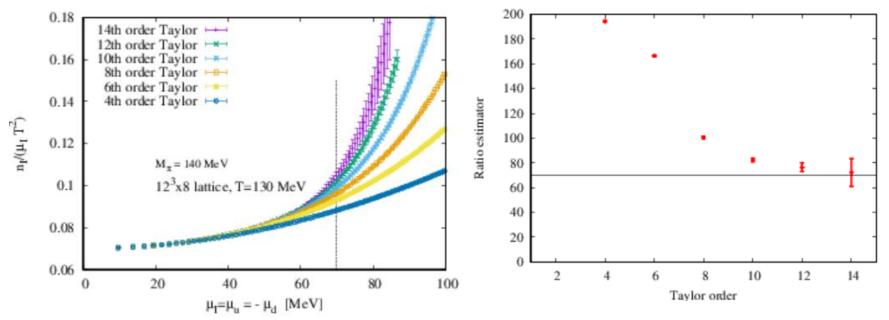
To hopefully see a divergence...

2<sup>nd</sup> order known since 2012 4<sup>th</sup> order known since 2015 6<sup>th</sup> order: now

### Is this even possible?

#### A case study: pion condensation [Wuppertal-Budapest, 2308.06105]

- Instead of  $\mu_B$ , introduce  $\mu_I$  (prefers  $\pi^+$  over  $\pi^-$ )
- Second order transition at low T and  $\mu_I pprox m_\pi/2 pprox 70 {
  m MeV}_{[
  m Son, Stephanov, PRL (2001)]}$  [Brandt, Endrődi, PRD (2



Eventually finds the correct value. 6<sup>th</sup> order gives  $170 \text{MeV} \gg 70 \text{MeV}$ No high orders in  $\mu_B$ : analysis of the radius of convergence from Taylor data is premature Warning: the ratio estimator is not always applicable [Giordano & Pásztor, PRD99(2019)]

### The HRG as a non-critical baseline

Hadron resonance gas (HRG) model  $p_{QCD} \approx \sum_{H} p_{H}^{free}$ 

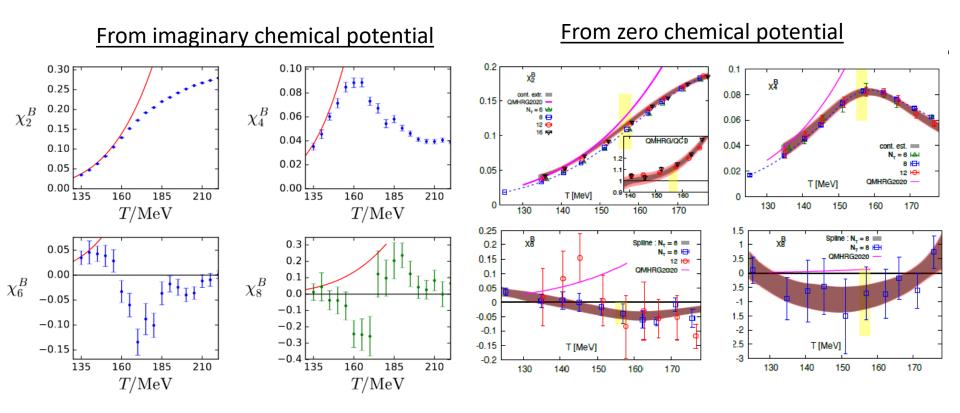
- sum over stable hadrons and resonances
- heavy ion phenomenology uses the HRG as a non-critical baseline (non-trivial: see, e.g., [Braun-Munzinger et al, NPA1008(2021)])
- in lattice QCD: can use grand canonical ensemble
- minimum goal: establish deviations from HRG (with good quality control!)

#### WHAT ARE THE CORRECTIONS TO THE HRG? ARE THEY LARGE?

### Corrections to the HRG

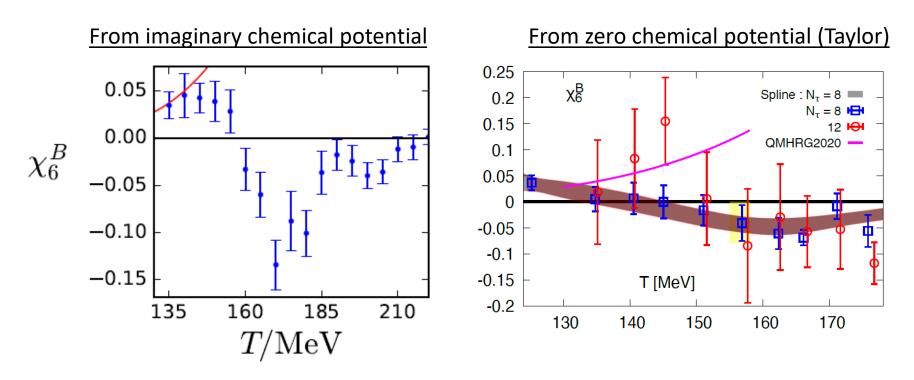


## Taylor coefficients of the pressure



[Wuppertal-Budapest, JHEP (2018)] (LT=4, N<sub>t</sub>=12) [HotQCD, PRD105 (2022)] (LT=4, N<sub>t</sub>=6,8,(12))

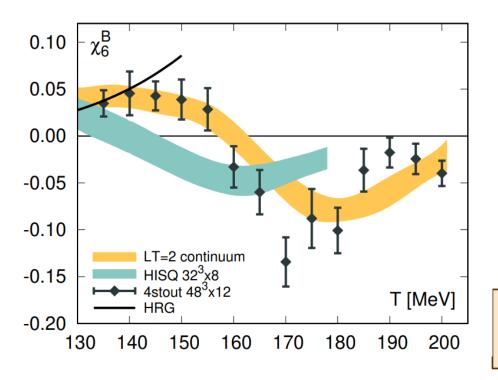
### 6<sup>th</sup> order: zoom in to see discrepancies



[Wuppertal-Budapest, JHEP (2018)] (LT=4, N<sub>t</sub>=12) [HotQCD, PRD105 (2022)] (LT=4, N<sub>t</sub>=8,(12))

-  $N_t$ =12 (left, WB) agrees with the HRG (value, slope) better than  $N_t$ =8 (right, HotQCD) at low T - At T=145-155MeV:  $N_t$ =12>0 and  $N_t$ =8<0

## 6<sup>th</sup> order order: new dataset



#### New dataset:

Taylor, LT=2, continuum (new discretization)

#### Lower T: cut-off effects dominate

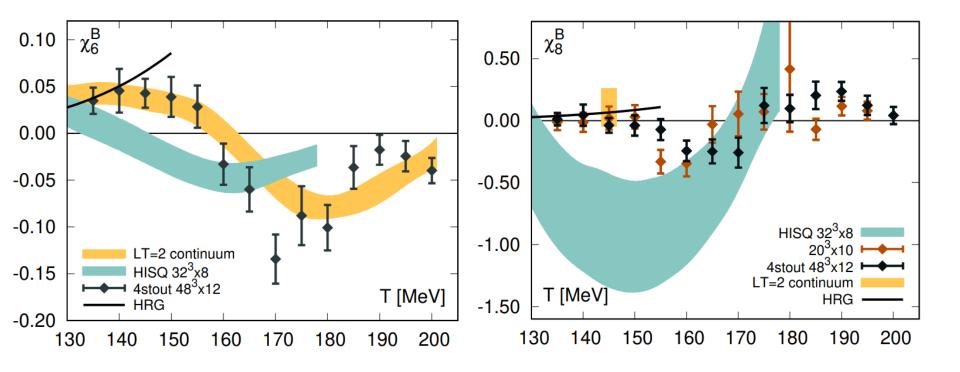
Smaller *T* means larger *a* for fixed  $N_t$ 5 points at least  $1\sigma$  below:  $\left(\frac{1-0.68}{2}\right)^5 \approx 10^{-4}$ 

**Higher T: finite volume effects dominate** T<sub>c</sub> depends on L

No sign of a CEP in the Taylor coefficients up to 6<sup>th</sup> order

[D. Pesznyák, Tuesday]

### 6<sup>th</sup> and 8<sup>th</sup> order order: new dataset



[D. Pesznyák, Tuesday]

# Outline

1) QCD in the grand canonical ensemble and the sign problem

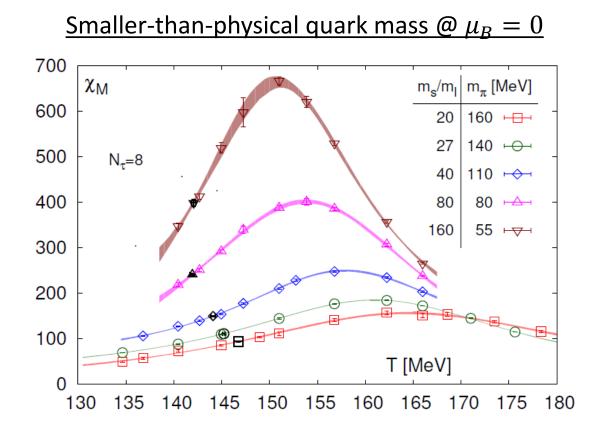
2) The phase diagram

3) The search for Ising criticality at  $\mu_B$ >0 and fluctuations

4) The equation of state of a hot-and-dense QGP and O(4) criticality

5) Summary and outlook

### Chiral criticality and the equation of state

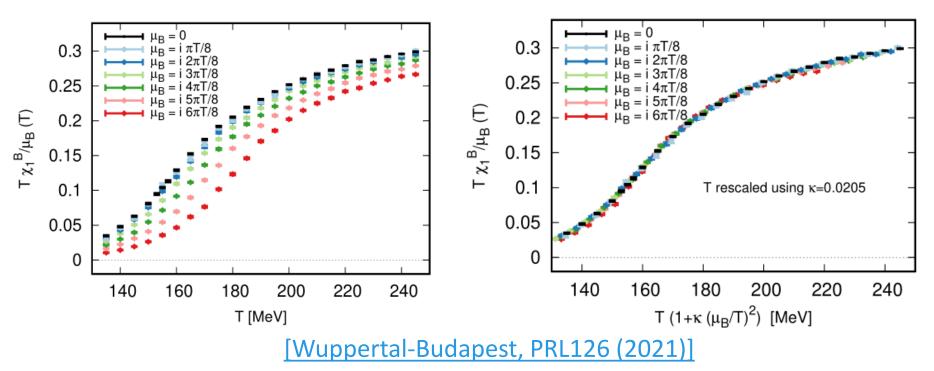


Plot from [HotQCD, PRL123 (2019)] See also [Kotov, Lombardo, Trunin, PLB823 (2021)]: scaling for heavier-than-physical quark masses

### Chiral criticality and the equation of state

- T and  $\mu_B$  dependence with physical masses
- Empirically: approximate scaling variable  $T(1 + \kappa_2 \hat{\mu}_B^2)$

 $\Rightarrow$  transition not sharpening for small  $\hat{\mu}_B^2$ 



I strongly suspect that the mechanism behind this collapse is chiral scaling.

## O(4) scaling and collapse plots at $\mu_B > 0$

**Observation:**  $\chi_1^B / (\hat{\mu}_B)$  collapses as a function of  $T(1 + \kappa \hat{\mu}_B^2)$  but  $\chi_2^B$  does not

Why? One possibility: scaling near the chiral limit (Kadanoff scaling ansatz)

$$p_{QCD}(T, \mu_B, m) - p_{QCD}(0, 0, m) \sim f_{sing}(h, t) \sim t^{2-\alpha} F\left(\frac{h}{t^{\beta\delta}}\right)$$
  
where  $h \sim m$  and  $t \sim T - T_{ch}(1 - \kappa \hat{\mu}_B^2)$ 

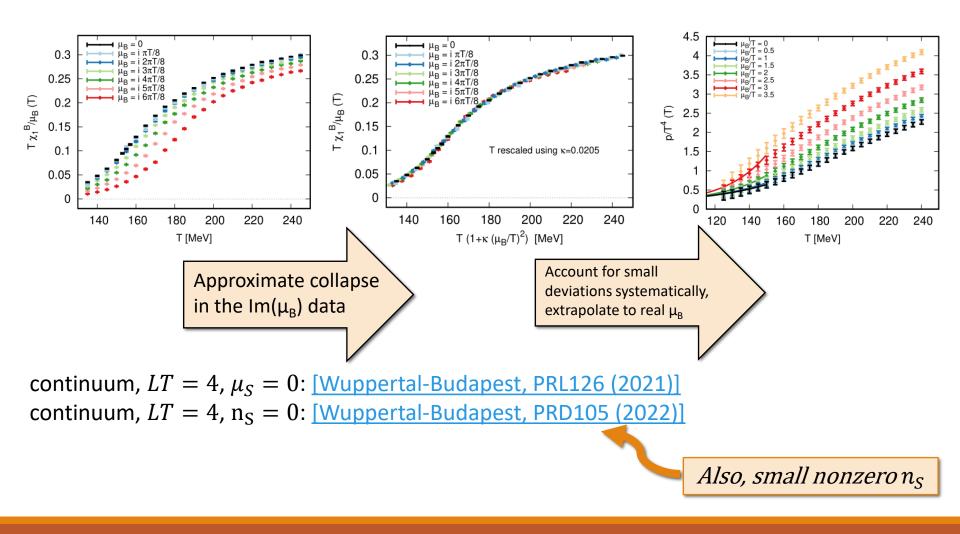
$$\Rightarrow \frac{1}{\hat{\mu}_B} \frac{\partial}{\partial \hat{\mu}_B} f_{sing} = (2 - \alpha) t^{1 - \alpha} F\left(\frac{h}{t^{\beta \delta}}\right) (2\kappa) + t^{1 - \alpha - \beta \delta} F'\left(\frac{h}{t^{\beta \delta}}\right) (-\beta \delta) (2\kappa)$$
$$\Rightarrow \text{ a function of the scaling variables h and t only}$$

$$\frac{\partial^2}{\partial \hat{\mu}_B^2} f_{sing} = (2\kappa)G(h,t) + (2\kappa\,\hat{\mu}_B)^2\frac{\partial G}{\partial t}$$
  

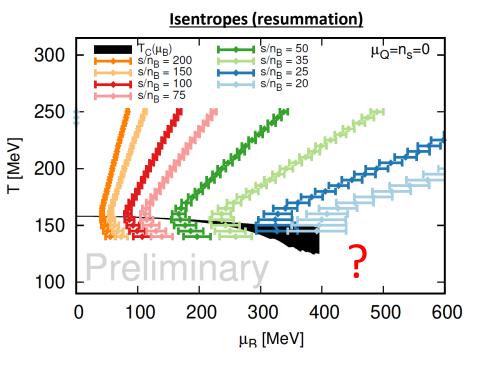
$$\Rightarrow \text{ not a function of h and t only}$$

Similar for the chiral condensate: here  $\Sigma/f_{\pi}^4$  collapses but  $\Sigma/T^4$  doesn't

# Alternative expansion scheme



### Precise EoS from extrapolations



RHIC freeze-out [STAR, PRC96 (2017)]

 $\sqrt{s} = 19.6 \text{GeV} \leftrightarrow \mu_B \approx 200 \text{MeV}$ 

$$\sqrt{s} = 11.5 \text{GeV} \leftrightarrow \mu_B \approx 300 \text{MeV}$$

$$\sqrt{s} = 7.7 \text{GeV} \leftrightarrow \mu_B \approx 400 \text{MeV}$$

No sign of critical lensing within errors

New preliminary dataset.

Improvement compared to last year comes from more accurate EoS at  $\mu_B = 0$ 

## More direct methods

#### Freely tune T and $\mu_B$ on the lattice?

Desirable:

No ill-posed analytic continuation Data closer to conjectured CEP

Common lore: Impossible

Truth:

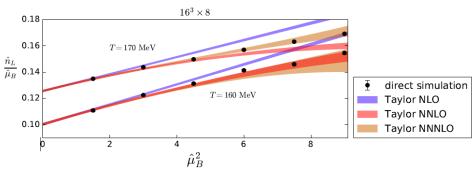
Possible (with reweighting), but expensive

Increasingly more feasible

Many technical developments:

[JHEP05 (2020)] [PRD105 (2022)] [PRD107 (2023)] [2308.06105]

#### One application: cross-check QGP EoS



[Wuppertal-Budapest, PRD 107 (2023)]

For  $T \ge 145$  MeV:

4<sup>th</sup> order Taylor accurate up to  $\mu_B = 2T$ Alternative expansion at least up to  $\mu_B = 3T$ 

Future: scan low T and larger  $\mu_{\text{B}}$  in small volume

## Summary and outlook

#### The phase diagram

- Curvature at  $\mu_B$ =0 very well established and small
- Fourth order at  $\mu_B$ =0 is also very small.
- Where does the crossover line deviate from the freeze-out curve?

#### **QGP** equation of state

- $\mu_B/T<2$  from 4<sup>th</sup> order Taylor expansion (continuum)
- $\mu_B/T<3-3.5$  from alternative expansion scheme (continuum)
- Direct simulations agree with expansions, provided the order is high enough
- No sign of critical lensing in the QGP EoS (within errors)
- Where do the more direct methods say at lower T?

#### Search for the CEP

- Continuum 6<sup>th</sup> order and 8<sup>th</sup> order fluctuations for the 1<sup>st</sup> time
- Some previous calculations had large cut-off effects
- No deviations from the HRG for T<145MeV in cumulants up to 8<sup>th</sup> order
- Can this (or absence of lensing) be converted to an exclusion region for the CEP?
- Need better algorithms to go to  $10^{\text{th}}\,$  and  $12^{\text{th}}\,$  order

# What does this mean?

Corrections to the HRG are exp. suppressed at low T, thus

 $\chi_6^B$  and  $\chi_8^B$  agree with HRG at say T=140MeV

 $\Rightarrow$  they will also agree everywhere below

The HRG cannot be exact at any T, since it misses effects that we know exist in full QCD, like N-N scattering. Correct way to proceed:

1) Demonstrate discrepancy between QCD and HRG at some order ( $\chi_{10}^B$ ?  $\chi_{12}^B$ ?) 2) Only then go to lower T

If at T=130MeV the fluctuations  $\chi_6^B$  and  $\chi_8^B$  agree with the HRG, that does NOT imply that there is no CEP at this temperature or above, either:

1) There is no CEP at this T or above, OR:

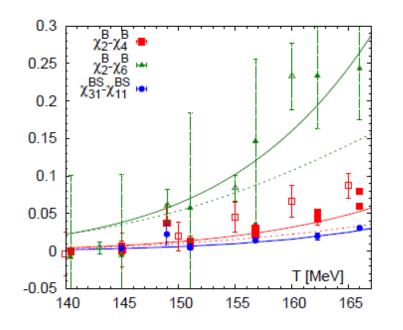
2) There is a CEP, but its effect on  $\chi_6^B$  and  $\chi_8^B$  is smaller than the error bars. If this is the case, the signal for the CEP will be stronger in say  $\chi_{10}^B$  and  $\chi_{12}^B$ 

### Repulsive hadronic models vs lattice data

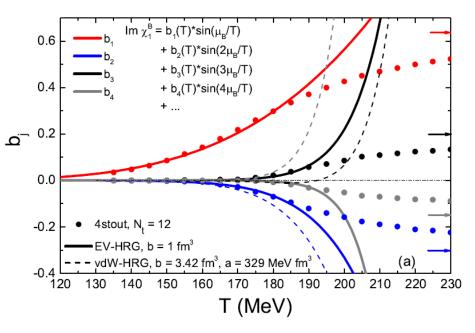
Repulsive core of NN interactions is very well established, and the HRG model does not take it into account at all!

[Huovinen, Petreczky PLB777 (2017)]

[Vovchenko, Pásztor et al, PLB 775 (2017)]



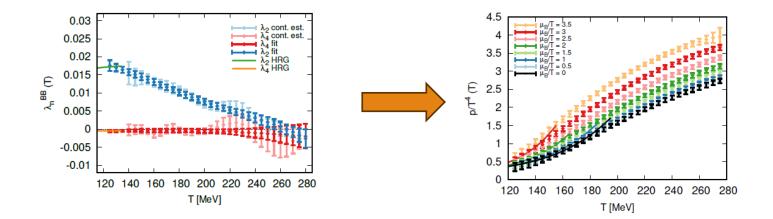
LT=4, N<sub>t</sub>=8, Taylor VS repulsive mean field



LT=4,  $N_t$ =12,  $Im\mu_B$  VS excluded volume or VdW HRG

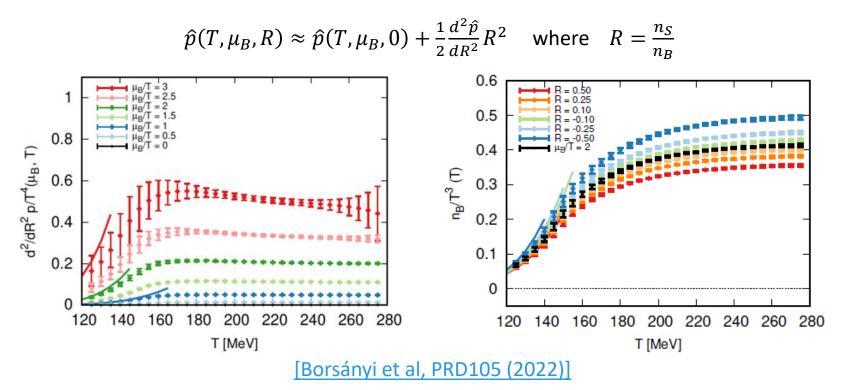
### Resummed EoS: some details

- Systematically improvable ansatz:  $F(T, \mu_B) = F(T', 0)$   $T' = T(1 \lambda_2(T)\hat{\mu}_B^2 \lambda_4(T)\hat{\mu}_B^4 \cdots)$
- This ansatz together with a choice of the observable F defines an extrapolation scheme (resummation)
- A good choice for  $\langle S \rangle = 0$  is  $F = \frac{c_1^B(T, \hat{\mu}_B)}{c_1^B(T \to \infty, \hat{\mu}_B)}$  where  $c_1^B \coloneqq \left(\frac{d\hat{p}}{d\,\hat{\mu}_B}\right)_{\langle S \rangle = 0}$
- The normalization makes sure the infinite temperature behavior is correct
- The ansatz itself exploits the existence of the approximate scaling variable
- Already the leading order, with  $\lambda_2$  only generates terms to all orders in the Taylor expansion of  $\hat{p}$
- Analysis is like the extrapolation of  $T_c(\hat{\mu}_B)$
- Result:  $\lambda_4$  is very small, while  $\lambda_2$  has a very simple temperature dependence



# Beyond strangeness neutrality

Makes it possible to take small local fluctuations of strangeness into account in hydrodynamics:



### Equation of state (summary)

- 1. Realize the existence of the approximate scaling variable
- 2. Turn it into a systematically improvable extrapolation ansatz [Borsányi et al, PRL126 (2021)]
- 3. Validate the scheme by comparison with direct simulation results at non-zero density

on finite (but reasonable) lattices [Borsányi et al, PRD107 (2023)]

- 4. Calculate the coefficients of the validated extrapolation scheme in the continuum in conditions relevant for heavy ion phenomenology. [Borsányi et al, PRD105(2022)]
- 5. Realize that the finite  $\mu_B$  part is so precise that the errors are dominated by  $\mu_B=0$ , so make the  $\mu_B=0$  equation of state more precise. [P. Parotto, Tue 16:30, QCD at finite T and  $\mu$ ]

#### $\Rightarrow$ A PRECISE EQUATION OF STATE FOR THE RHIC BES RANGE

# Reweighting

Fields: 
$$\phi$$
 Target theory:  $Z_t = \int D\phi w_t(\phi)$  Simulated theory:  $Z_s = \int D\phi w_s(\phi)$   
 $\langle O \rangle_t = \frac{\int D\phi w_t(\phi)O(\phi)}{\int D\phi w_t(\phi)} = \frac{\int D\phi \frac{w_t(\phi)}{w_s(\phi)} w_s(\phi)O(\phi)}{\int D\phi \frac{w_t(\phi)}{w_s(\phi)} w_s(\phi)} = \frac{\langle \frac{w_t}{w_s} O \rangle_s}{\langle \frac{w_t}{w_s} \rangle_s}$  and  $\frac{Z_t}{Z_s} = \langle \frac{w_t}{w_s} \rangle_s$ 

Two problems (usually exponentially hard in the volume) can arise:

- sign problem:  $\frac{w_t}{w_s} \in \Rightarrow$  large signal to noise ratios

- overlap problem: tails of  $P\left(\frac{w_t}{w_s}\right)$  do not decay fast enough  $\Rightarrow$  potentially incorrect results

Two choice of  $w_s$  that eliminate this overlap problem:

- phase reweighting:  $w_s = e^{-S_{YM}} |\det M| \implies \frac{Z_t}{Z_s} = \langle e^{i\theta} \rangle_s$ 

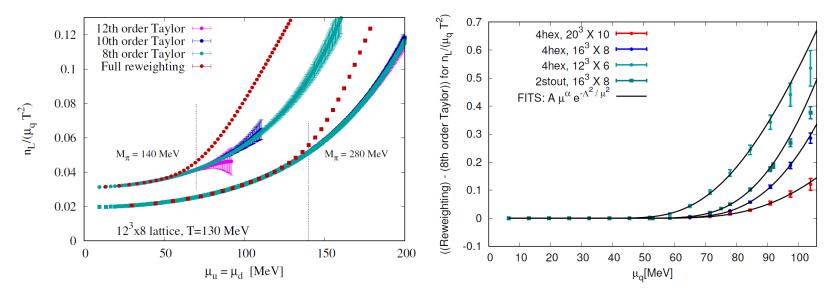
- sign reweighting:  $w_s = e^{-S_{YM}} |\operatorname{Re} \det M| \implies \frac{Z_t}{Z_s} = \langle \pm \rangle_s$ 

### Staggered rooting and low T difficulties

Say I want N<sub>f</sub>=2+1 with staggered:  $Z = \int DU(\det M_{ud}(U,\mu))^{\frac{1}{2}} (\det M_s(U))^{\frac{1}{4}} e^{-S_{YM}(U)}$ Determinant complex, so sqrt ambiguous. Standard choice: continuously connect to the positive root at  $\mu$ =0 We empirically observe that this leads to non-analytic behavior (essential singularity) at  $\mu$ =0

The non-analytic part is suppressed for  $\mu < m_{\pi}$ 

The amplitude of the non-analytic part decreases with the lattice spacing



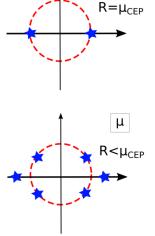
# Radius of convergence

$$\hat{p} = \hat{p}(T, \mu_B = 0) + \frac{1}{2}\chi_2^B\hat{\mu}_B^2 + \frac{1}{4!}\chi_4^B\hat{\mu}_B^4 + \cdots$$
 converges for  $|\hat{\mu}_B| < R = ?$ 

**Motivation:** Inside the radius of convergence of the Taylor expansion there can be no singularities in the complex  $\mu_B$  plane, and thus also no CEP on the real  $\mu_B$  line

- For a long time (≈15years) ratio estimators were used
- For complex singularities (expected, e.g., for  $T \approx T_{crossover}$ ) doesn't converge [Vovchenko et al, PRD97 (2018)] [Giordano & Pásztor, PRD99(2019)]
- There are also possible issues with lattice artefacts [Giordano et al, PRD101 (2020)] [Borsányi et al, 2308.06105]
- For reliable estimation, needs many more orders
- Higher orders not available in the continuum
- Can be phenomenologically estimated from O(4) scaling + other assumptions [Mukherjee & Skokov, PRD103 (2021)]

 $\Rightarrow$  All current lattice estimates of R should be considered preliminary/exploratory estimates, with inadequate quality control ( $\Rightarrow$  MORE WORK)



## O(4) scaling and collapse plots at $\mu_B$ >O

Empirical observations from imaginary  $\mu_B$  data:

-  $\Sigma/f_{\pi}^4$  collapses as a function of  $T\left(1 + \kappa \left(\frac{\mu_B}{T}\right)^2\right)$  but  $\Sigma/T^4$  does not

-  $\chi_1^B / (\mu_B / T)$  collapses as a function of  $T \left( 1 + \kappa \left( \frac{\mu_B}{T} \right)^2 \right)$  but  $\chi_2^B$  does not BUT WHY?

One possible explanation is scaling near the chiral limit:

$$p_{QCD}(T,\mu_B,m) - p_{QCD}(0,0,m) \sim f_{sing}(h,t) \sim t^{2-\alpha}F\left(\frac{h}{t^{\beta\delta}}\right) \text{ where } h \sim m \text{ and } t \sim T - T_{ch}(1 - \kappa(\mu_B/T_{ch})^2)$$

$$\Rightarrow \Sigma_{sing} = m \frac{\partial}{\partial m} f_{sing} = t^{2-\alpha} \frac{h}{t^{\beta\delta}} F'\left(\frac{h}{t^{\beta\delta}}\right)$$

$$\Rightarrow \text{ near } T_{ch} \text{ near the chiral limit, } \Sigma/f_{\pi}^4 \text{ is a function of the scaling variables h and t only, while } \Sigma/T^4 \text{ is not}$$

$$\Rightarrow \frac{1}{(\mu_B/T_{ch})} \frac{\partial}{\partial(\mu_B/T_{ch})} f_{sing} = (2-\alpha)t^{1-\alpha}F\left(\frac{h}{t^{\beta\delta}}\right)(2\kappa) + t^{1-\alpha-\beta\delta}F'\left(\frac{h}{t^{\beta\delta}}\right)(-\beta\delta)(2\kappa) \coloneqq (2\kappa)G(h,t)$$

$$\Rightarrow \text{ again, a function of h and t only, while}$$

$$\frac{\partial^2}{\partial(\mu_B/T_{ch})^2} f_{sing} = (2\kappa)G(h,t) + \left(\frac{(2\kappa)\mu_B}{T_{ch}}\right)^2 \frac{\partial G}{\partial t}$$

$$\Rightarrow \text{ not a function of h and t only}$$