Heavy quark diffusion from lattice QCD

Hai-Tao Shu

Phys.Rev.Lett.130,231902 (2023) arXiv: 2311.01525

ZIMÁNYI SCHOOL 2023

Dec. 4 - 8, 2023, Budapest, Hungary

Hai-Tao Shu

Heavy Quark Diffusion

Heavy quarks in heavy ion collisions

Heavy quarkonia are produced only in the early stage of collisions

Bound state / Free quarks

Free quarks thermalize via diffusion within time: τ_1

$$u_{\rm kin} = \frac{1}{\eta_D} = \frac{1}{\kappa/T^3} \left(\frac{T_c}{T}\right)^2 \left(\frac{M}{1.5 \text{ GeV}}\right) \frac{3 \text{ GeV}}{T_c^2}$$

- Perturbative estimates: [G. Moore and D. Teaney, PRC.71.064904] $au_{
 m kin, charm} \sim 6 ~{
 m fm/c} \gg au_{
 m kin, light} \sim 1 ~{
 m fm/c}$
- Experimental estimates (RHIC): [STAR Collaboration, PRL,106 (2011) 159902] $\tau_{
 m kin,charm} \approx \tau_{
 m kin,light}$

Need non-perturbative ab-initio determination for equilibration time!

Identify the heavy quark diffusion

Phenomenological diffusion picture of classical particle

Equilibrium -> Relaxation -> Equilibrium

$$\langle A(\mathbf{x}) \rangle_{\text{eq}} = 0 \quad \partial_t \langle A(\mathbf{x}, t) \rangle = D \nabla^2 \langle A(\mathbf{x}, t) \rangle$$

Solution:

Linear response theory

Perturbation to Hamiltonian:

$$H(t) = H_0 - \int d\mathbf{x} \ A(\mathbf{x})h(x)e^{\epsilon t}\Theta(-t)$$

Solution:

Difficult from mesonic correlators

Hai-Tao Shu

Simpler case: infinite heavy quark mass limit

Heavy quark momentum diffusion coefficient in HQET

J. Casalderrey-Solana and D. Teaney, PRD 74, 085012

- S. Caron-Huot et al., JHEP 0904 (2009) 053
- A. Bouttefeux, M. Laine, JHEP 12 (2020) 150

$$\partial_t p_i = -\eta_D p_i + \xi_i(t)$$

$$\langle \xi_i(t)\xi_j(t')\rangle = \kappa \delta_{ij}\delta(t-t')$$

$$\partial_t \mathbf{p} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) = \mathbf{F}$$

• Mass dependent momentum diffusion coefficient

$$\kappa^{(M)} \equiv \frac{M^2 \omega^2}{3T \chi_q} \sum_i \frac{2T \rho_V^{ii}(\omega)}{\omega} \Big|^{\eta \ll |\omega| \lesssim \omega_{\rm UV}}$$

• Large quark mass limit in effective field theory

$$\kappa \equiv \frac{\beta}{3} \sum_{i=1}^{3} \lim_{\omega \to 0} \left[\lim_{M \to \infty} \frac{M^2}{\chi_q} \int_{-\infty}^{\infty} \mathrm{d}t \ e^{i\omega(t-t')} \int \mathrm{d}^3 \vec{x} \left\langle \frac{1}{2} \{ \mathcal{F}^i(t, \vec{x}), \mathcal{F}^i(0, \vec{0}) \} \right\rangle \right]$$

Heavy quark momentum diffusion on the lattice

Color-electric field correlation function

$$G_{E,B}(\tau,T) = \int \frac{\mathrm{d}\omega}{\pi} K(\omega,\tau,T) \rho_{E,B}(\omega,T)$$

- Cheaper to measure on the lattice
- No peak structures in spectral functions
- Absence of transport peak

Gradient flow

Smear fields according to diffusion equation:

$$\frac{\mathrm{d}B_{\mu}(x,t)}{\mathrm{d}t} \sim -\frac{\delta S_G[B_{\mu}(x,t)]}{\delta B_{\mu}(x,t)} \sim D_{\nu}G_{\nu\mu}(x,t) \qquad B_{\nu}(x,t)|_{t=0} = A_{\nu}(x)$$

- Need good enough signal at finite flow time
- Need to know how much one can flow
- Need to know how to go back to zero flow

Maximum flow time limit

color-electric correlators

- Flow destroys the signal at small distances
- Large distance parts are not affected
- More points are destroyed at larger flow times
- At most 1% deviation of flowed correlators from unflowed ones determines maximum flow time:

$$a \lesssim \sqrt{8t} \lesssim \frac{\tau - a}{3}$$

a: to suppress lattice effects

a : lattice version of the

perturbative flow time limit

Develop methodology in quenched approximation

- Consistent results from ML & GF
- Gradient flow paves the way to full QCD

Kappa_E in QCD: double extrapolation

- First full QCD calculation of kappa!
- Wide temperature range 195 MeV 352 MeV
- Mpion=320 MeV
- Extrapolation Ansatz describes lattice data well

hotQCD, PRL 130 (2023) 23, 231902

Kappa_E in QCD: spectra modelling

hotQCD, PRL 130 (2023) 23, 231902

$$\rho_{\max} \equiv \max(\phi_{\mathrm{IR}}, \phi_{\mathrm{UV}})$$

$$\rho_{\mathrm{smax}} \equiv \sqrt{\phi_{\mathrm{IR}}^2 + \phi_{\mathrm{UV}}^2}$$

$$\rho_{\mathrm{plaw}} \equiv \begin{cases} \phi_{\mathrm{IR}} & \omega \le \omega_{\mathrm{IR}}, \\ a\omega^b & \text{for } \omega_{\mathrm{IR}} < \omega < \omega_{\mathrm{UV}}, \\ \phi_{\mathrm{UV}} & \omega \ge \omega_{\mathrm{UV}}, \end{cases}$$

Good description of lattice data using different models

Finite mass correction

M. Laine, JHEP 06 (2021) 139

Anomalous dimension at 1-loop order in MSbar:

$$p_B(\omega) = \frac{g^2 C_F \omega^3}{6\pi} \left[1 - \frac{g^2 C_A}{(4\pi)^2} \frac{2}{\epsilon} + (\text{finite}) \right] + \mathcal{O}(g^6)$$

Logarithmic divergence in flow time:

 $G_B^{\text{flow}}(\tau, \tau_{\text{F}}) \sim 1 + 2\gamma_0 g^2 \ln(\mu/\mu_{\text{F}})$

Regulated by a matching procedure:

 $G_B^{\text{phys}}(\tau, T) = \lim_{\tau_F \to 0} Z_{\text{match}}(\bar{\mu}_T, \bar{\mu}_{\tau_F}, \mu_F) G_B^{\text{flow}}(\tau, T, \tau_F)$

hotQCD, arXiv: 2311.01525

Kappa_B in QCD: spectra modeling

- UV spectral function needs matching to the physical one as well
- Similar modeling methodology as in the color-electric field case
- Good description of lattice data using different models

Kappa_B in QCD: scattering from various models

Kappa_E v.s. Kappa_B

Quenched results from:

A. Francis, et al., PRD92, 116003

B. L. Altenkort, et al., PRD103,014511

- D. Banerjee, et al., Nucl.Phys.A.2023.122721
- D. Banerjee, et al., JHEP 08 (2022) 128
- N. Brambilla, et al., PRD107, 054508

- Similar magnitude for Kappa_E and Kappa_B in full QCD & quenched
- Smooth connection between quenched and full QCD in temperature

Temperature-dependent charm quark mass

Summary

hotQCD, arXiv: 2311.01525

- 2piTD decreases with increasing quark mass, same for LQCD, QPM & T-matrix
- Quark mass dependence is small in LQCD & T-matrix
- Weaker quark mass dependence than QMP calculations
- Agree with AdS/CFT at ~Tc (rapid equilibrium)
- Agree with T-matrix estimate at moderate and high T
- Lattice results favor the experimental estimate for the charm quark equilibration time

Backup: full QCD setup

 $N_f = 2 + 1$, HISQ, $m_{\pi} = 320$ MeV

T [MeV]	β	am_s	am_l	N_{σ}	N_{τ}	# conf.
195	7.570	0.01973	0.003946	64	20	5899
	7.777	0.01601	0.003202	64	24	3435
	8.249	0.01011	0.002022	96	36	2256
220	7.704	0.01723	0.003446	64	20	7923
	7.913	0.01400	0.002800	64	24	2715
	8.249	0.01011	0.002022	96	32	912
251	7.857	0.01479	0.002958	64	20	6786
	8.068	0.01204	0.002408	64	24	5325
	8.249	0.01011	0.002022	96	28	1680
293	8.036	0.01241	0.002482	64	20	6534
	8.147	0.01115	0.002230	64	22	9101
	8.249	0.01011	0.002022	96	24	688
352	8.249	0.01011	0.002022	96	20	2488

- Wide temperature range
- Different lattice spacings
- Large lattices towards thermodynamic limit

Backup: matching factor

$$\ln Z_{\text{match}} = \int_{\bar{\mu}_{T}^{2}}^{\bar{\mu}_{T}^{2}} \gamma_{0} g_{\text{MS}}^{2}(\bar{\mu}) \frac{d\bar{\mu}^{2}}{\bar{\mu}^{2}} + \gamma_{0} g_{\text{MS}}^{2}(\bar{\mu}_{T}) \left[\ln \frac{\bar{\mu}_{T}^{2}}{(4\pi T)^{2}} - 2 + 2\gamma_{\text{E}} \right] - \gamma_{0} g_{\text{MS}}^{2}(\bar{\mu}_{\tau_{\text{F}}}) \left[\ln \frac{\bar{\mu}_{T}^{2}}{4\mu_{\text{F}}^{2}} + \gamma_{\text{E}} \right]$$

$$2.0$$

$$2.0$$

$$Z_{\text{match}}$$

$$1.8$$

$$1.6$$

$$1.4$$

$$1.2$$

$$1.0$$

$$\frac{\bar{\mu}_{\tau_{\text{F}}}/\mu_{\text{F}}}{\mu_{\tau_{\text{F}}}/\mu_{\text{F}}} = 1.00, \ \bar{\mu}_{T}/T = 19.18$$

$$\frac{\bar{\mu}_{\tau_{\text{F}}}}{\mu_{\tau_{\text{F}}}/\mu_{\text{F}}} = 1.00, \ \bar{\mu}_{T}/T = 2\pi$$

$$\frac{\bar{\mu}_{\tau_{\text{F}}}}{\mu_{\tau_{\text{F}}}} = \frac{1.00}{\mu_{\text{T}}}, \ \bar{\mu}_{\text{T}} = 19.18$$

$$\frac{\sqrt{8\pi_{\text{F}}}}{\mu_{\tau_{\text{F}}}}$$

$$0.8$$

$$0.8$$

$$0.0$$

$$0.1$$

$$0.2$$

$$0.3$$

$$0.4$$

$$0.5$$