Dip-bump structure in pp single diffraction

ISTVÁN SZANYI in collaboration with László Jenkovszky

23rd Zimányi School

Budapest, 4-8 December 2023

Elastic pp scattering and single diffractive dissociation

in pp elastic scattering and single diffraction (diffractive dissociation) the dominant exchange is the **pomeron exchange** and the final states are characterized by **large rapidity gaps**

outgoing particles in pp elastic scattering

outgoing particles in pp single diffraction

Dip-bump structure in elastic pp $d\sigma_{el}/dt$

E. Nagy et al., Nucl. Phys. B 150, 221 (1979) W. Faissler et al., Phys. Rev. D 23, 33 (1981)

TOTEM Collab., EPL 95:4, 41001 (2011) TOTEM Collab., Eur. Phys. J. C 79:10, 861 (2019) TOTEM Collab., Eur. Phys. J. C 80:2, 91 (2020) TOTEM Collab., Eur. Phys. J. C 82:3, 263 (2022)

TOTEM & D0 Collabs., Phys. Rev. Lett. 127:6, 062003

3

Dipole Regge model

basic assumptions:

- the relativistic partial wave amplitude can be analytically continued to complex *j* angular momentum values
- the high energy behaviour of the amplitude is determined by an isolated *j*-plane pole of the second order (dipole)
- the residue at the pole is independent of *t*, *t*-dependence enters only through the Regge trajectory

 the dipole pomeron scattering amplitude is obtained as a derivative of a simple pole pomeron scattering amplitude

$$A^{\rm DP}(s,\alpha) = \frac{d}{d\alpha} A^{\rm SP}(s,\alpha)$$
$$= e^{-\frac{i\pi\alpha}{2}} \left(\frac{s}{s_0}\right)^{\alpha} \left[G'(\alpha) + \left(L - \frac{i\pi}{2}\right)G(\alpha)\right]$$

•
$$A^{SP}(s, \alpha) = e^{-\frac{i\pi\alpha}{2}}G(\alpha)\left(\frac{s}{s_0}\right)^{\alpha}$$
 is the

simple pole scattering amplitude

- $G(\alpha)$ is some function of α
- $\alpha = \alpha(t)$ is the Regge trajectory
- $L = \ln(s/s_0)$

Dipole Pomeron model

L. L. Jenkovszky and A. N. Wall, Czech. J. Phys. B26, 447 (1976) L. L. Jenkovszky, Fortsch. Phys.34, 791 (1986)

$$A^{\rm DP}(s,\alpha) = e^{-\frac{i\pi\alpha}{2}} \left(\frac{s}{s_0}\right)^{\alpha} \left[G'(\alpha) + \left(L - \frac{i\pi}{2}\right)G(\alpha)\right]$$

 the Regge trajectory is approximated by a real and linear function

 $\alpha \equiv \alpha(t) = 1 + \delta + \alpha' t$

• motivated by the shape of the $d\sigma_{el}/dt$ (exponential decrease), the paramterization of $G'(\alpha)$ is

$$G'(\alpha) = ae^{b[\alpha - \alpha_0]}$$
 with $\alpha_0 \equiv \alpha(t = 0)$

• $G(\alpha)$ is obtained by integrating $G'(\alpha)$:

$$G(\alpha) = \int G'(\alpha) d\alpha = a \left(e^{b[\alpha - \alpha_0]} / b - \gamma \right)$$

Exchange of a trajectory interpreted as a virtual particle with running mass squared t and spin $\alpha(t)$

Model for elastic pp and $\overline{p}p$ scattering amplitude

 $A(s,t)_{pp}^{\overline{p}p} = A_P^{DP}(s,t) \pm A_0^{DP}(s,t)$

the dipole pomeron amplitude is

the dipole odderon amplitude is

$$A_0^{DP}(s,t) = -iA_{P \to 0}^{DP}(s,t)$$

(with free parameters labeled by "O")

the odderon contribution is small at low-|t| but dominates completely after the bump

the inclusion of the dipole odderon is important to describe the data around the dip-bump and at higher |t| values

SPS + TEVATRON + LHC $d\sigma_{el}/dt$ data and the model

qualitative description to the data in a wide kinematic (*s*, *t*) range

Pomeron	Odderon	
$\delta_P = 0.02865$	$\delta_0 = 0.2042$	
$\alpha'_P = 0.4284$	$\alpha'_{O} = 0.1494$	
$a_P = 45.63$	$a_0 = 0.01934$	
$b_P = 4.873$	$b_0 = 2.160$	
$\gamma_P = 0.06085$	$\gamma_O = 0.4866$	
$s_{0P} = 11.26$	$s_{00} = 1.03$	

Parameters resulting from a fit to the proton-proton and proton-antiproton differential cross section, total cross section, and real to imaginary part of the forward scattering amplitude data in the kinematic range $0.5 \text{ TeV} \le \sqrt{s} \le 13 \text{ TeV}$ $\& 0.01 \text{ GeV}^2 \le -t \le 2.5 \text{ GeV}^2$

Dip and bump position in the dipole model

Dip-bump structures in single diffractive dissociation?

 measurements of pp single diffractive dissociation at ISR do not show a dipbump structure at |t| values where such a structure is observed in elastic pp scattering

M.G. Albrow et al., Nucl. Phys. B72, 376 (1974)

- it can be explained in a framework of a dipole Regge model in which the dipbump structure moves to higher [t] values as the value of the slope parameter decreases
- a dipole odderon+pomeron Regge approach can be used to predict dipbump structures in pp single diffractive dissociation at LHC energies

pp elastic and single diffractive dissociation differential cross section data at \sqrt{s} = 31 GeV as a function of – t

Regge approach for single diffraction (SD)

when $s \gg M^2 \gg t$, the differential cross section is given by a sum of triple-Reggeon contributions

$$\frac{d^2 \sigma_{SD}}{dt dM^2} = \sum_{ijk} \frac{d^2 \sigma^{ijk}_{SD}}{dt dM^2}$$

P. D. B. Collins, Cambridge University Press (1977)K. A. Goulianos et al., *Phys. Rev. D* 59, 114017 (1999)

$$\frac{d^2 \sigma^{ijk}_{SD}}{dt dM^2} = \frac{1}{16\pi^2} \frac{s_0}{s^2} g_{R_i pp}(t) g_{R_j pp}(t) \left(\frac{s}{M^2}\right)^{\alpha_i(t) + \alpha_j(t)} g_{R_i R_j R_k}(t) g_{R_k pp}(0) \left(\frac{M^2}{s_0}\right)^{\alpha_{R_k}(0)} \cos\left(\frac{\pi}{2} \left(\alpha_i(t) - \alpha_j(t)\right)\right)$$

Dipole Regge approach for single diffraction (SD)

 in the triple Regge approach the triple pomeron vertex results the following contribution for the double differential SD cross section:

$$\frac{d^2 \sigma_{SD}^{PPP}}{dt dM^2} = \frac{1}{16\pi^2} \frac{1}{M^2} g_{Ppp}^2(t) \left(\frac{s}{M^2}\right)^{2\alpha_P(t)-2} g_{PPP}(t) g_{Ppp}(0) (M^2)^{\alpha_{0P}-1}$$

- *g*_{PPP} is found to be t-independent
- assumption: the t-dependent part of the amplitude of the SD process has the form in case the pomeron a simple pole:

$$A_{SD}^{SP}(s, M^2, \alpha(t)) \sim \mathrm{e}^{-\frac{\mathrm{i}\pi\alpha}{2}} G(\alpha)(s/M^2)^{\alpha}$$

- $G(\alpha)$ incorporates the t-dependece coming from $g_{Ppp}(t)$
- a dipole pomeron amplitude is obtained as:

$$A_{SD}^{DP}(s, M^2, \alpha) = \frac{d}{d\alpha} A_{SD}^{SP}(s, M^2, \alpha) \sim e^{-\frac{i\pi\alpha}{2}} \left(\frac{s}{M^2}\right)^{\alpha} \left[G'(\alpha) + \left(L_{SD} - \frac{i\pi}{2}\right)G(\alpha)\right] \qquad \qquad L_{SD} \equiv \ln(s/M^2)$$

Dipole Regge approach for single diffraction (SD)

the double differential cross section for the SD process resulting from the dipole pomeron PPP amplitude is:

$$\frac{d^2 \sigma_{SD}^{PPP}}{dt dM^2} = \frac{1}{M^2} \left(G_P'^2(\alpha_P) + 2L_{SD} G_P(\alpha_P) G_P'(\alpha_P) + G_P^2(\alpha_P) \left(L_{SD}^2 + \frac{\pi^2}{4} \right) \right) \left(\frac{s}{M^2} \right)^{2\alpha_P(t) - 2} \sigma^{Pp}(M^2)$$

$$G_P'(\alpha_P) = a_P e^{b_P[\alpha_P - 1 - \delta_P]} \qquad \alpha_P = 1 + \delta_P + \alpha_P' t \qquad L_{SD} \equiv \ln(s/M^2)$$

$$G_P(\alpha_P) = \int G'(\alpha_P) d\alpha_P = a_P \left(\frac{e^{b_P[\alpha_P - 1 - \delta_P]}}{b_P} - \gamma_P \right) \qquad \sigma^{Pp}(M^2) = g_{PPP} g_{Ppp}(0) (M^2)^{\delta_P}$$

the dipole odderon contribution is considered in the form of an odderon-odderonpomeron OOP vertex and written as:

$$\frac{d^2 \sigma_{SD}^{00P}}{dt dM^2} = \frac{1}{M^2} \left(G_0'^2(\alpha_0) + 2L_{SD}G_0(\alpha_0)G'(\alpha_0) + G_0^2(\alpha_0) \left(L_{SD}^2 + \frac{\pi^2}{4} \right) \right) (s/M^2)^{2\alpha_0(t) - 2} \sigma^{Pp}(M^2)$$

RRP and pion contribution in SD

• RRP contribution:

$$\frac{d^2 \sigma_{SD}^{RRP}}{dt dM^2} = \frac{1}{M^2} a_R^2 e^{2b_R \alpha_R(t)} (s/M^2)^{2\alpha_R(t)-2} \sigma^{Pp}(M^2)$$
$$\alpha_R(t) = 1 + \delta_R + \alpha'_R t$$

the pion exchange contribution:

• The full double SD differential cross section is written as:

$$\frac{d^2\sigma_{SD}}{dtdM^2} = \frac{d^2\sigma_{SD}^{PPP}}{dtdM^2} + \frac{d^2\sigma_{SD}^{OOP}}{dtdM^2} + \frac{d^2\sigma_{SD}^{RRP}}{dtdM^2} + \frac{d^2\sigma_{SD}}{dtdM^2}$$

Description of the SD data

qualitative description to the data in a wide kinematic (s, t, M^2) range which includes SPS, TEVATRON and LHC energies

Dip-bump in SD at SPS and LHC energies

the position of the dip and bump in -t in the SD process changes slowly with M^2 (or $\xi = M^2/s$) and determined by the OOP triple contribution

the dip and bump structure is predicted in SD at SPS and LHC energies in the squared four-momentum transfer range 3 GeV² $\lesssim -t \lesssim$ 7 GeV²

Dip-bump in SD at LHC energies (M^2 and \sqrt{s} dependence)

with increasing energy at a fixed M^2 value or with decreasing M^2 at a fixed energy the position of the dip-bump structure slowly goes to smaller -t values

- a Regge phenomenological model with dipole pomeron+odderon contribution is applied to describe experimental data on pp single diffraction at energies higher than 0.5 TeV
- dip-bump structure is predicted in the SD process in the squared fourmomentum transfer range 3 GeV² $\leq -t \leq$ 7 GeV² and it is resulted from a dipole odderon contribution (OOP vertex)
- an experimental check of the predicted structure would be interesting

Thank you for your attention!

Structures in elastic pp differential cross section

 measurements at CERN ISR in the 1970s revealed the characteristic structures of the high energy elastic pp differential cross section

Dipole Regge model

$$A^{\rm DP}(s,\alpha) = e^{-\frac{i\pi\alpha}{2}} \left(\frac{s}{s_0}\right)^{\alpha} \left[G'(\alpha) + \left(L - \frac{i\pi}{2}\right)G(\alpha)\right]$$

• motivated by the shape of the $d\sigma_{el}/dt$ (exponential decrease), the paramterization of $G'(\alpha)$ is:

$$G'(\alpha) = ae^{b[\alpha - \alpha_0]}$$

(α_0 is the intercept of the trajectory)

• $G(\alpha)$ is obtained by by integrating $G'(\alpha)$:

$$G(\alpha) = \int G'(\alpha) d\alpha = a \left(\frac{e^{b[\alpha - \alpha_0]}}{b} - \gamma \right)$$

• introducing that $\varepsilon = \gamma b$ the amplitude can be rewritten as:

$$A^{\rm DP}(s,t) = i\frac{a}{b}\left(\frac{s}{s_0}\right)^{\alpha_0} e^{-\frac{i\pi}{2}(\alpha_0 - 1)} \left[r_1^2(s)e^{r_1^2(s)[\alpha(t) - \alpha_0]} - \varepsilon r_2^2(s)e^{r_2^2(s)[\alpha(t) - \alpha_0]}\right]$$

$$r_1^2(s) = b + L(s) - i\pi/2$$
 $r_2^2(s) = L(s)$

Model for elastic pp and $\overline{p}p$ scattering amplitude

$$A(s,t)_{pp}^{\overline{p}p} = A_P^{DP}(s,t) + A_f^{SP}(s,t) \pm [A_0^{DP}(s,t) + A_{\omega}^{SP}(s,t)]$$

the dipole pomeron and odderon amplitudes are:

$$\begin{split} A_{P}^{DP}(s,t) &= e^{-\frac{i\pi\alpha_{P}(t)}{2}} \left(\frac{s}{s_{0P}}\right)^{\alpha_{P}(t)} \left[G'_{P}(t) + \left(L_{P}(s) - \frac{i\pi}{2}\right)G_{P}(t)\right] & A_{0}^{DP}(s,t) = -iA_{P\rightarrow0}^{DP}(s,t) \\ G'_{P}(t) &= a_{P}e^{b_{P}[\alpha_{P}(t) - \alpha_{P}(0)]} & G_{P}(t) = a_{P}\left(e^{b_{P}[\alpha_{P}(t) - \alpha_{P}(0)]}/b_{P} - \gamma_{P}\right) & \text{(with free parameters labeled by "O")} \\ \hline L_{P}(s) &= \ln\frac{s}{s_{0P}} & \alpha_{P}(t) = 1 + \delta_{P} + \alpha'_{P}t \end{split}$$

the simple pole f and ω reggeon amplitudes are:

$$A_{f}(s,t) = -a_{f}e^{-\frac{i\pi\alpha_{f}(t)}{2}}(s/s_{0f})^{\alpha_{f}(t)}e^{b_{f}t}$$

$$\alpha_{\rm f}(t) = \alpha_{\rm f}^0 + \alpha_{\rm f}' t$$

$$\mathbf{A}_{\boldsymbol{\omega}}(\mathbf{s},\mathbf{t}) = -\mathbf{i}\mathbf{A}_{\mathbf{f}\to\boldsymbol{\omega}}(\mathbf{s},\mathbf{t})$$

(with free parameters labeled by "ω")

ISR $d\sigma_{el}/dt$ data and the model

pomeron	odderon	f-reggeon	ω-reggeon
$\delta_P = 0.043$	$\delta_0 = 0.14$	$\alpha_{\rm f}^0=0.69$	$\alpha^0_\omega = 0.44$
$\alpha'_P = 0.36$	$\alpha'_0 = 0.13$	$lpha_{f}^{\prime}=0.84$	$\alpha'_{\omega} = 0.93$
$a_{P} = 9.10$	$a_0 = 0.029$	$a_f = 15.4$	$a_{\omega} = 9.69$
$b_P = 8.47$	$b_0 = 6.96$	$b_f = 4.78$	$b_{\omega} = 3.5$
$\gamma_P = 0$	$\gamma_0 = 0.11$	-	-
$s_{0P} = 2.88$	$s_{00} = 1$	$s_{0f} = 1$	$s_{0\omega} = 1$

Fit to proton-proton and proton-antiproton differential cross section data at ISR energy region, and to ρ and total cross section data from 5 GeV up to the highest energies

$d\sigma_{el}/dt$ with P and O contribution, ρ and σ_{tot} w/o O

23

ho and σ_{tot} w/o O

Dipole Regge approach for single diffraction (SD)

 in the triple Regge approach the triple pomeron vertex results the following contribution for the double differential SD cross section:

$$\frac{d^2 \sigma_{SD}^{PPP}}{dt dM^2} = \frac{1}{16\pi^2} \frac{1}{M^2} g_{Ppp}^2(t) \left(\frac{s}{M^2}\right)^{2\alpha_P(t)-2} g_{PPP}(t) g_{Ppp}(0) (M^2)^{\alpha_{0P}-1}$$

- *g*_{PPP} is found to be t-independent
- assumption: the t-dependent part of the amplitude of the SD process has the form in case the pomeron a simple pole:

$$A_{SD}^{SP}(s, M^2, \alpha(t)) \sim \mathrm{e}^{-\frac{\mathrm{i}\pi\alpha}{2}} G(\alpha)(s/M^2)^{\alpha}$$

- $G(\alpha)$ incorporates the t-dependece coming from $g_{Ppp}(t)$
- a dipole pomeron amplitude is obtained as:

Odderon contribution in SD in form of an OOP vertex

 the odderon-odderon-pomeron vertex results the following contribution for the double differential SD cross section:

$$\frac{d^2 \sigma_{SD}^{OOP}}{dt dM^2} = \frac{1}{16\pi^2} \frac{1}{M^2} g_{Opp}^2(t) (s/M^2)^{2\alpha_O(t)-2} g_{OOP}(t) g_{Ppp}(0) (M^2)^{\delta_P}$$

 assumption: g_{00P}(t) is t-independent and the t-dependent part of the odderon amplitude of the SD process has the form:

$$A_{SD}^{SP}(s,M^2,\alpha_0) \sim \mathrm{e}^{-\frac{\mathrm{i}\pi\alpha}{2}} G_0(\alpha_0) (s/M^2)^{\alpha_0}$$

$$G'_O(\alpha_O) = ae^{b[\alpha_O - 1]}$$

• $G_0(\alpha_0)$ incorporates the t-dependece coming from $g_{Opp}(t)$

$$G_O(\alpha_0) = \int G'_O(\alpha_0) d\alpha_0$$

a dipole odderon contribution to the cross section is obtained as:

$$\frac{d^2 \sigma_{SD}^{00P}}{dt dM^2} = \frac{1}{M^2} \left(G_0'^2(\alpha_0) + 2L_{SD}G_0(\alpha_0)G'(\alpha_0) + G_0^2(\alpha_0)\left(L_{SD}^2 + \frac{\pi^2}{4}\right) \right) (s/M^2)^{2\alpha_0(t)-2} \sigma^{Pp}(M^2)$$

(the *a* parameter of $G_O(\alpha_0)$ accounts also in the defference between g_{OOP} and g_{PPP}) 28

t and ξ dependence of the SD process at LHC energies

dip-bump in -t at LHC

