Spectator-induced electromagnetic effects in  ${\rm ^{40}Ar+^{45}Sc}$  collisions at 40A GeV/c beam momentum

23<sup>rd</sup> Zimányi School Winter Workshop on Heavy Ion Physics, Budapest, Hungary

# **Sneha Bhosale**

(Eötvös Loránd University)

# <u>Outline</u>

- Motivation
- NA61/SHINE
- Particle identification
- Results
- Summary & conclusions

# 1) Motivation

# **Spectator-induced electromagnetic (EM) effects**:

1. Charged spectators generate EM fields, which modify the trajectories of  $\pi^+$ ,  $\pi^-$  mesons PRC 87(2013), 054909

Rybicki,

PoS

HEP(2009)03

0.5

- $\rightarrow$  they modify the double differential  $\pi^+/\pi^-$  ratios, and result in charge splitting of directed flow.
- 1.2 Pb+Pb 2. This EM distortion is sensitive to the distance  $d_{E}$  between the √s<sub>NN</sub>= 17.3 GeV peripheral pion formation zone and the spectator system. ц + 0.8  $\rightarrow$  new information on the space-time evolution of the system. A. Rybicki, MESON 2016 0.6 spectator system 0.4 25 75 125 0.2 participant 175 225 zone 500 MeV/c Minimum at ٥ 0.3 🗸 0.4 0.2  $x_{r} = 0.15 = m_{\pi}/m_{n}$ produced particles (pions moving at spectator velocity) spectator (mesons) **p**, beam velocity (c.m.s.) S. Bhosale by I. Sputowska Zimányi 2023

### **Study of space-time evolution of the system from EM effects**:

1. Introductory work- estimating  $d_E$  as a function of pion rapidity: faster pions are produced closer to spectator system. A. Rybicki, MESON 2016





# Study of space-time evolution of the system from EM effects:

- 1. Introductory work- estimating  $d_F$  as a function of pion rapidity: faster pions are produced closer to spectator system. A. Rybicki, MESON 2016
- 2. First realistic description of EM distortion of  $\pi^+/\pi^-$  ratios. (1)collision geometry (2) longitudinal evolution, (3)  $p_T$  spectra, (4) pion creation time, (5) isospin effects, (6) directed and elliptic flow, (7) transverse expansion, (8) vorticity,(9) spectator expansion, (10) relativistic effects on EM field.

 $\rightarrow$ Information on creation time scales for fast pions.



**STAR** 

0.5

e [fm]

σ

3

**NA49** 

Au+Au, Pb+Pb

7.7-17.3 GeV

WA98  $\pi$ 

1.5



However, up to now, no corresponding information on the full centrality dependence of EM effects in a small system was available.

At the CERN SPS such measurements are now available for the first time.

# 2) NA61/SHINE

### About NA61/SHINE:



- VTPC-1 and VTPC-2 are placed in the magnetic field.
- TPC system: track reconstruction and particle identification based on ionization energy loss.
- Projectile Spectator Detector (PSD): hadronic calorimeter, measures projectile spectators energy.
  - → strongly asymmetric, projectile oriented. .....Different from collider experiments!!
  - → this method is particularly good for my study, as it is focused on projectile spectator charge and its influence on particle emission in the forward hemisphere.
- S5 : scintillator counter, crucial to define the minimum-bias interaction trigger (T4). S1 · S2 · V1 ·  $\overline{S5}$ 
  - $\rightarrow$  the S5 signal below the beam ion signal is associated with the beam interacting with the target.

# 3) Particle identification

#### **Particle Identification:**

\* the case of negative particles is shown





Note: this identification method can be readily used for measuring the  $\pi^+/\pi^-$  ratio (the imposed trivial biases largly cancel out, and the remaining can be estimated by simple methods).

# 4) Results

#### <u> $\pi^+/\pi^-$ ratio at three different centralities:</u>



#### <u> $\pi^+/\pi^-$ ratio at six different centralities:</u>



#### **Comparison between Ar+Sc and Pb+Pb reactions:**



- the overall EM effect is similar,  $\frac{1}{2}$  of the effect is observed in Ar+Sc as compared to Pb+Pb - isospin effects are visible in the values of the  $\pi^+/\pi^-$  ratio at higher values of  $p_{\tau}$  (>125 Mev/c)

# The model:

- The initial geometry of the collision is obtained using Glauber simulation (impact parameter and spectator charge corresponds to the experimental centrality selection).
- The final state pion emission takes place from the hypothetical interaction point after a given emission time, t<sub>delay</sub>.

Note: account taken that the spectator velocity is very close to speed of light, the numerical value of  $\mathbf{d}_{E}$  in fm is nearly identical to the numerical value of  $\mathbf{t}_{delav}$  in fm/c (  $\mathbf{d}_{R} \approx \mathbf{t}_{delav}$  ).

spectator spheres expand radially with surface velocity  $\beta$ .

In spectator c.m.s.

C5

0.8

0.6

0.4

0.2

- the initial 2D  $x_{F}$ ,  $p_{T}$  distribution of the emitted pions is assumed similar (in shape) to nucleon-nucleon collisions at 40A GeV/c (parametrized from NA61/SHINE p+p data) parametrization by Ł. Rozpłochowski, 2021  $\pi^{+}/\pi^{-}$ π<sup>+</sup>/π
- 1. A reasonably high sensitivity of the modeled EM effect to the expansion of the spectator system
- 2. Change of  $d_{F}$  by less than 1 fm significantly changes the overall shape of the EM distortion
- 3. Sensitivity to the space-time evolution of the system (A. Rybicki, A. Szczurek, 2007)

4. We can obtain estimates for the pion emission distance  $d_{F}$  by adjusting the model to the data.



Φ NA61/SHINE

\*\* the additional influence of participant charge, as well as the strong final state interactions are neglected.

projectile

spectato

pT = 25 MeV/c+ β= 0.35, d<sub>=</sub>=0.75

0.3

β= 0.35, d<sub>=</sub>=0.0

0.5

XF

\*\*All the preliminary results on Ar+Sc collisions at 40A GeV/c presented here come from PoS EPS-HEP2021 (2022),309

b

target

pT = 25 MeV/c

+ β= 0.35, d<sub>=</sub>=0.75

spectator

C5

0.8

0.6ł

0.4

0.2

−Φ NA61/SHINE

### The importance of this analysis:



Phys.Polon.Supp. 9 (2016) 303)

Distribution of the distance  $d_{E}$  between the pion formation zone and the spectator system as a function of pion rapidity. The black "x" symbols correspond to values estimated on the basis of pion data from STAR, NA49 and WA98. Very tiny red crosses correspond to a Monte Carlo model simulation of pion production by resonances emitted from an intermediate system.

→ The decrease of  $d_E$  with increase in  $y/y_{beam}$  and the non-zero value of  $d_E$  at beam rapidity ( $y/y_{beam}$ = 1) can be understood as a direct consequence of pion production from resonances emitted from an intermediate system (fireball, QGP?).

Zimányi 2023

# 5) Summary & conclusions:

• New data on spectator-induced electromagnetic effects in Ar+Sc collisions at 40 A GeV/c beam momentum ( $\sqrt{s_{NN}} = 8.76 \text{ GeV}$ ) is the first ever data on the full centrality dependence of these effects in small systems at the CERN SPS (and first analysis of peripheral small systems in NA61/SHINE)

→ the  $\pi^+/\pi^-$  ratio goes down to about 0.4 which is far below the lower limit estimated from a pure strong interaction, preserving isospin symmetry (0.82)

• Spectator-induced EM effects are present in small systems (in spite of the small spectator charge)

 $\rightarrow$  no EM effect was seen in the most central collisions (0-10% of the total Ar+Sc cross-section)

- The new experimental results on Ar+Sc collisions have been compared with the existing data on the peripheral Pb+Pb reactions
  - $\rightarrow$  a qualitative similarity in the x<sub>F</sub>, p<sub>T</sub> dependence of the EM effect

# 5) Summary & conclusions:

- A simulation based on a simple theoretical model was performed
  - → the bulk of the centrality dependence of the EM effect in Ar+Sc reactions is described reasonably well by the simple approach used
  - → comparison between model predictions and experimental data at higher  $p_T$  suggests that our description of isospin effects can be considered oversimplified
  - → velocities β characterizing the fragmentation of the projectile spectator system adjusted to the exp. data are quite large (in some way connected to the expansion of the participant system?)
  - → the values of the pion emission distance  $d_E$  between the pion formation zone and the spectator system agree with the overall trend obtained for heavy ion collisions on the basis of STAR, WA98 and NA49 data

# Thank you so much!

This work was partially supported by the National Science Center, Poland, under grant no. 2014/14/E/ST2/00018



<u>Ar+Sc</u>:



#### Advantages of this study :

1. EM effects in a small system in the full range of centrality, from very central to peripheral collisions (first-ever at the SPS).

2. Centrality dependence of the space-time evolution of pion production for fast pions.

3. Possibility to verify existing models describing EM, isospin, and other effects.

#### <u>Comparison between Ar+Sc 40A GeV/c and 150A GeV/c:</u>

<sup>40</sup>/<sub>18</sub> Ar nucleus: protons 18 neutrons 22 p/n = 0.82

M. Kiełbowicz [NA61/SHINE], Acta Phys. Polon. Supp. 12 (2019), 353, see also: A. Marcinek [NA61/SHINE], Acta Phys. Polon. B 50 (2019), 1127



\*\*All the preliminary results on Ar+Sc collisions at 40A GeV/c presented here come from PoS EPS-HEP2021 (2022),309

20

### **Centrality parameters:**

\*\*All the preliminary results on Ar+Sc collisions at 40A GeV/c presented here come from PoS EPS-HEP2021 (2022),309



| Class     | $E_F$ selection     | Centrality percentiles (%) | Total events |
|-----------|---------------------|----------------------------|--------------|
| $C_0$     | $0 < E_F < 660$     | 0-9.5                      | 61k          |
| $C_1$     | $660 < E_F < 840$   | 9.5-19                     | 61k          |
| $C_2$     | $840 < E_F < 980$   | 19-28.5                    | 60k          |
| $C_3$     | $980 < E_F < 1090$  | 28.5-39                    | 65k          |
| $C_4$     | $1090 < E_F < 1260$ | 39-67                      | 171k         |
| $C_5$     | $1260 < E_F < 1400$ | 67-93.5                    | 144k         |
| $C_{0+1}$ | $0 < E_F < 840$     | 0-19                       | 121k         |
| $C_{2+3}$ | $840 < E_F < 1090$  | 19-39                      | 126k         |
| $C_{4+5}$ | $1090 < E_F < 1400$ | 39-93                      | 314k         |

Estimates and their uncertainties have been obtained using three models:

- Dedicated simple geometrical "Glauber" simulation with selection of centrality by the number of Ar spectator nucleons.
- EPOS 1.99 with its implementation of the Wounded Nucleon Model, with selection of centrality by the number of Ar spectator nucleons.
- same version of EPOS, with centrality selection by the E<sub>F</sub> from a GEANT 4 simulation of PSD

| Class     | <b>[fm]</b>       | $< N_W >$        | <qsar></qsar>    |
|-----------|-------------------|------------------|------------------|
| $C_0$     | $1.94{\pm}0.18$   | $61.9 \pm 1.7$   | $4.2{\pm}0.4$    |
| $C_1$     | $3.32{\pm}0.06$   | $46.5 {\pm} 0.6$ | $7.6 {\pm} 0.1$  |
| $C_2$     | $4.23 {\pm} 0.10$ | $35.0 {\pm} 0.6$ | $10.2{\pm}0.1$   |
| $C_3$     | $5.04{\pm}0.17$   | $25.2 {\pm} 0.9$ | $12.4{\pm}0.2$   |
| $C_4$     | $6.34{\pm}0.26$   | $12.9 {\pm} 0.8$ | $15.2 \pm 0.2$   |
| $C_5$     | $7.78 {\pm} 0.44$ | $4.9{\pm}0.1$    | $17.0 \pm 0.5$   |
| $C_{0+1}$ | $2.62{\pm}0.12$   | $54.4{\pm}1.1$   | $5.8 \pm 0.2$    |
| $C_{2+3}$ | $4.65 {\pm} 0.15$ | $29.9 {\pm} 0.8$ | $11.4{\pm}0.2$   |
| $C_{4+5}$ | $6.91 \pm 0.33$   | $9.8{\pm}1.4$    | $15.9 {\pm} 0.3$ |
| 4         |                   | 1                |                  |













