Simone Valdre'

INFN - Sezione di Firenze

Zimanyi Winter School Budapest, December 6th, 2023

FAZIA: a new generation array for nuclear dynamics and EoS experiments at intermediate energies

Introduction •000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions 0000
Intermediate	e energies				

Two opposite worlds "colliding"

Low energies ($< 20 \,\text{AMeV}$)

Mean field driven reactions

- Compound nucleus
 - Evaporation residue
 - Fission fragments
- Deep inelastic collisions
- Direct reactions

High energies $(> 100 \,\text{AMeV})$

Nucleon - nucleon interactions

- Fireball
 - Vaporization
 - Radial / elliptic flow
- Participant / spectator
- $\bullet~\pi~/~K$ production

Introduction 000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
Heavy-ion	collisions				

Finite nuclear matter

Ideal homogeneous system made of protons and neutrons

- Ultrarelativistic regime
 - Vaporization
 - Gaseous state

- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - LIQUID STATE

 $\mathbf{5}$

E/A [MeV]

100

Introduction 000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
Heavy-ion	collisions				

E/A[MeV] 100 $\varepsilon_F \sim 34$ $\mathbf{5}$

Finite nuclear matter

Ideal homogeneous system made of protons and neutrons

- Ultrarelativistic regime
 - Vaporization
 - Gaseous state
- Fermi energy region
 - Multifragmentation
 - Phase transition
- Coulomb barrier region
 - Compound Nucleus formation
 - Binary reactions and DIC
 - LIQUID STATE

J. Pochodzalla et al., arXiv:nucl-ex/9607004

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
000000	000	0000	0000	00000	0000
Reaction	mechanisms				

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0000	0000		0000
Equation	of state				

Asymmetric nuclear matter Equation of State (EoS)

• Symmetry energy term depending on proton and neutron densities:

$$\frac{E}{A}(\rho, I) = \frac{E}{A}(\rho) + \frac{E_{\text{sym}}}{A}(\rho)I^2$$

Isospin parameter

$$I = \frac{(\rho_n - \rho_p)}{\rho} = \frac{N - Z}{A}$$

$E_{\rm sym}$ behaviour is known only near ho_0

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
	6	0000	0000	00000	0000
Education	of state				

 $E_{
m sym}$ behaviour is known only near ho_0

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
		<u></u>			

1.000 GeV

Very different energy loss profiles!

550.6 keV/(mg/cm²) 0.8 Residual energy normalized to E 0.6 Stopping power n. Bragg Peak 0.4 0.2 0 0.4 0.6 0.8 1.6 1.8 Thickness [m] 0.2 1 1.2 1.4 1.000 GeV 5.061 MeV/(mg/cm²) 0.8 Residual energy normalized to E Stopping power 0.6 n. Bragg Peak 0.4 0.2 0 2 Λ 6 8 10

¹²C

р

Thickness [mm]

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0000	0000	00000	0000

Very different energy loss profiles!

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0000	0000	00000	0000

High energy detectors

Tracker + calorimeter concept

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
000000	000	0000	0000	00000	0000

Low energy detectors

Telescope concept

First layer

Gas detector or thin silicon to avoid stopping low energy ions

Further layers

Thick silicon sensors or scintillators in order to stop particles and ions

All sensors are both trackers and calorimeters!

GARFIELD detector @ LNL

Introduction 0000000	Particle ID ●00	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Telescope	e concept				

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	●00	0000	0000		0000
Telescope	e concept				

¹²C @ 180 MeV

$77\,\text{MeV}\,+\,103\,\text{MeV}$

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	●00	0000	0000		0000
Telescope	e concept				

¹²C @ 180 MeV

 $77\,\text{MeV}+103\,\text{MeV}$

¹⁴N @ 180 MeV

 $152\,\text{MeV}+28\,\text{MeV}$

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	●00	0000	0000		0000
Telescope	concept				

¹²C @ 180 MeV

 $77 \, \text{MeV} + 103 \, \text{MeV}$

¹⁴N @ 180 MeV

 $152\,\text{MeV} + 28\,\text{MeV}$

¹⁶O @ 180 MeV 180 MeV + 0 MeV

Introduction 0000000	Particle ID o●o	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions 0000
Pulse Shap	e Analysis				

O<u>hmíc síde</u> Junction side

Introduction 0000000	Particle ID ○●○	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
Pulse Sha	pe Analysis				

Introduction 0000000	Particle ID o●o	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions 0000
Pulse Shap	e Analysis				

Introduction 0000000	Particle ID 00●	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
The FAZIA	telescope				

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction 0000000	Particle ID 00●	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions 0000
The FAZI	A telescope				

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 µm reverse-mounted Si detector;
- **1**0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction 0000000	Particle ID 00●	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions 0000
The FAZI	A telescope				

The telescope stages

- 300 µm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- 10 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

16 telescopes, together with **front-end electronics**, form a **block** operating in **vacuum**.

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0●00	0000	00000	0000
FA7IA fro	ont-end elect	ronics			

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0000	0000	00000	0000
FA7IA fro	nt_end elect	ronics			

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

₽

- Compactness and modularity
- Very good isotopic discrimination capabilities
- \bullet Thresholds (${\lesssim}10\,\text{MeV}/\text{u})$ suited for Fermi energies

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

- Analogue chain: charge preamplifiers and anti-aliasing filters
- Signals are immediately digitized with **14-bit** ADCs:
 - on-line processed on FPGAs
 - $\bullet\,$ energy resolution is better than $1\,\%\,$ from 5 MeV to 4 GeV
- common clock distribution for synchronous sampling

₽

- Compactness and modularity
- Very good isotopic discrimination capabilities
- \bullet Thresholds (${\lesssim}10\,\text{MeV}/\text{u})$ suited for Fermi energies

S. Valdré et al, Nucl. Instr. and Meth. A 930 (27), 2019

0000000	000	0000	0000	00000	0000
Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions

FAZIA modularity

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
FAZIA mo	odularity				

GANIL (France) 2018 – today

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions 0000

INDRA setup

Original configuration (1992-2016)

- 90% of the solid angle covered
- 17 telescope rings (8-24 sectors per ring)
 - ring 1: IC + plastic scintillators
 - rings 2-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

J. Pouthas et al, Nucl. Instr. and Meth. A 357 (418), 1995

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions 0000
INDRA setu	р				

Present configuration (2017-today)

- FAZIA at forward angles!
- 12 telescope rings (8-24 sectors per ring)
 - rings 1-5: removed!
 - rings 6-9: IC-Si-Csl telescopes
 - rings 10-17: IC-Csl telescopes

0000000	000	0000	0000	00000	0000
Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions

INDRA setup

0000000	000	0000	•000	00000	0000
Identificat	ion methods	;			

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- \bullet identification threshold corresponding to $\sim 50\,\mu m$ penetration

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

Introduction	Particle ID 000	INDRA-FAZIA arrays 0000	FAZIA PID ●000	FAZIA TOF 00000	0000
Identificati	ion methods				

$\Delta E - E$ correlation

- exploits the Bethe-Bloch energy loss relation
- identification threshold due to first layer thickness

Pulse Shape Analysis^a

- charge collection depending on the impinging nuclei
- \bullet identification threshold corresponding to $\sim 50\,\mu m$ penetration

E - ToF correlation

- under implementation
- lowest identification threshold

^a N. Le Neindre et al, Nucl. Instr. and Meth. A 701 (145), 2013

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions 0000
$\Delta E - E$	correlation				

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

	172/(11D) 170	ZIA TOF CONClusions
000000 000 0000	0000	000 0000

Pulse shape in Silicon sensors

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
Pulse shape	in CsI(TI)	scintillators			

A. Badalà et al, Riv. Nuovo Cim. 45 (189), 2022

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF •0000	Conclusions
Time of f	light with FA	ZIA			

Not the first heavy-ion experiment to implement ToF^a

^a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF 00000	Conclusions
Time of f	light with FA	ZIA			

Not the first heavy-ion experiment to implement ToF^a

Our challenges:

- large area $(2 \times 2 \text{ cm}^2)$, reverse-mounted Si detectors;
- signal slowed down by anti-aliasing filter;
- time mark extraction from 250 MS/s sampled signals;
- not using beam radiofrequency;
- 1 m flight base

^a F. Amorini et al, IEEE T. Nucl. Sci. 55 (717), 2008

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF 0●000	Conclusions
FAZIA time	mark				

For time mark extraction, after some tests we decided to adopt a digital ARC-CFD^a with $t_{\rm D}=20\,\rm ns$ and $f=20\,\%$

^a Even if the CFD is compensated, there is still a residual dependence on pulse shape, thus we discriminate both **mass** and **charge** of detected particles

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF 0●000	Conclusions
FAZIA time	mark				

For time mark extraction, after some tests we decided to adopt a digital ARC-CFD^a with $t_{\rm D}=20\,\rm ns$ and $f=20\,\%$

FAZIA time mark is digitally extracted from the acquired signal:

- we used the first layer low range signal (\sim 300 MeV range, 14-bit @ 250 MS/s);
- all signals are referred to the same validation time, which must be subtracted to obtain the true time mark:

$$t^{(\mathrm{ev,det})} = t_{\mathrm{CFD}}^{(\mathrm{ev,det})} - t_{\mathrm{val}}^{(\mathrm{ev})}$$

^a Even if the CFD is compensated, there is still a residual dependence on pulse shape, thus we discriminate both **mass** and **charge** of detected particles

$$ToF \equiv t - t_{0}$$
event by event
correction
$$target$$

$$t_{0}$$

$$Unknown mass$$

$$E_{ref}, m_{ref}$$

$$t_{ref}$$

$$t_{ref}$$

$$E_{ref} = \frac{1}{2}m_{ref} \left(\frac{d}{t_{ref} - t_{0}}\right)^{2}$$

$$ToF \equiv t - t_{0}$$
event by event
correction
$$Unknown mass$$

$$E_{un},(Z_{un})$$

$$E_{ref},m_{ref}$$

$$t_{ref}$$

$$d_{ref}$$

$$t_{0}$$

$$t_{0} = t_{ref} - d_{ref}\sqrt{\frac{m_{ref}}{2E_{ref}}}$$

(

$$ToF \equiv t - t_{0}$$
event by event
correction
$$target$$

$$t_{0}$$

$$ToF = t - t_{ref} + d_{ref} \sqrt{\frac{m_{ref}}{2E_{ref}}}$$

 Introduction
 Particle ID
 INDRA-FAZIA arrays
 FAZIA PID
 FAZIA ToF
 Conclusions

 0000000
 0000
 0000
 0000
 0000
 0000
 0000

Final E - ToF correlation

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF 0000●	Conclusions

Improvement of isotope discrimination

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0000	0000		•000
Quasi-pro	jectile physic	S			

10⁻²

10⁻³

10-4

10⁻⁵

10⁻⁶

(b)

 $\sqrt{}$

32MeV/nucl. EXP

Ν

30

20

(a)

 $\sqrt{}$

10⁻²

10⁻³

10⁻⁴ 20⊢

N

30-**EXP**

52MeV/nucl.

.....

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
0000000	000	0000	0000	00000	0000

Quasi-projectile physics

Introduction	Particle ID	INDRA-FAZIA arrays	FAZIA PID	FAZIA ToF	Conclusions
000000	000	0000	0000	00000	0000

Charged particle spectroscopy

pictures from G. Verde talk

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15–50 AMeV)

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Present status

- FAZIA is a general purpose, modular and flexible apparatus
- almost full solid angular coverage achieved with INDRA+FAZIA coupling
- setup designed for Fermi energies (15–50 AMeV)

BUT

Future perspectives

- lower energies \Rightarrow ToF and thin Si layers
- higher energies ⇒ thick Si layers or new detectors at all

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

• Thicker sensors with the same FAZIA electronics

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

Introduction 0000000	Particle ID 000	INDRA-FAZIA arrays	FAZIA PID 0000	FAZIA ToF	Conclusions
Conclusions					

Collaboration is planning to measure at higher energies (FRIB @ MSU) to explore the supra-saturation regime of the nuclear matter. We are considering many alternatives:

- Thicker sensors with the same FAZIA electronics
- New block design with the same FAZIA acquisition protocols
- Full re-design of the apparatus based on the FAZIA expertise

FAZIA technology will be fundamental for the future developments

Thanks for your attention

Backup slides

The FAZIA block

2 telescopes are connected to a FEE card.

The FAZIA block

8 FEE cards are connected to a block card via a back plane.

The FAZIA block

Backup

up to 36 block cards are connected to a regional board via a full duplex 3 Gb/s optical link

Energy range for Z,A discrimination in FAZIA

lon	E_Z [AMeV]	E_A [AMeV]
Н	0.5 – 195	0.5 - 195
He	0.5 - 195	0.5 - 195
Li	1.5 - 250	1.5 - 250
С	3.5 –	4 – 25
Ne	6 –	9 - 40
S	8 –	13 – 55
Cr	10	20 – 35
Xe	25 –	no