TA34

The OSCAR correlator for low energy nuclear reactions and heavy-ion collisions

Luigi Redigolo for the Nucl_Ex collaboration

Dip. di Fisica e Astronomia - Università di Catania INFN - Sezione di Catania

luigi.redigolo@ct.infn.it

Sezione di Catania Istituto Nazionale di Fisica Nucleare

Budapest, Hungary, 6 December 2023

Talk Outline

- OSCAR working principles
- Performance features
- Example of the resonance decay of the ¹²C Hoyle state
- Applications for low energy HIC and femtoscopy
- Present and future facilities to exploit OSCAR

OSCAR features and characteristics

hOdoscope

for **C**orrelations

of **S**ilicons

and Analysis

of **R**eactions

OSCAR as low energy detector

High angular resolution (1° at 55°)

Low energy threshold (~ 0.5 MeV/A)

High granularity and modularity

2nd stage *****

16 independent ceramic-framed silicon pad detectors. Thickness: 300 μm. Active area: 1 cm² each. 1st stage
Single Sided Silicon Strip Detector
(SSSSD): 16 strips
20 μm thickness: low detection threshold, to identify slowest particles

Overlap between the two stages:

64 ΔE-E pseudo-telescopes

Further reading → D. Dell'Aquila, NIM A 877 227-237 (2018).

OSCAR features and characteristics

hOdoscope

for **Correlations**

of **S**ilicons

and Analysis

of **R**eactions

OSCAR as low energy detector

High angular resolution (1° at 55°)

Low energy threshold (~ 0.5 MeV/A)

High granularity and modularity

2nd stage

16 independent ceramic-framed silicon pad detectors. Thickness: 300 μm. Active area: 1 cm² each. Single Sided Silicon Strip Detector (SSSSD): 16 strips 20 µm thickness: low detection threshold,

1st stage

to identify slowest particles

Overlap between the two stages:

64 ΔE-E pseudo-telescopes

Further reading → D. Dell'Aquila, NIM A 877 227-237 (2018).

Performances

(02, 01) (03, 01) (05, 02) (06, 02) (07, 02) (10, 03) (11, 03) (12, 03) (14, 04) (15, 04) (16, 04) (04, 01) 5 (I3, 04) (08, 60 (03, 05) (07, 06) (10, 07) (11, 07) (12, 07) (1Z, UB) (13, 08) (14, 08) 60 (04, 05) (05, 06) (90 9 07, 6 90 8 09, (11, 11) (15, 12) (07, 10) (10, 11) 60 (12, 11) (14, 12) (05, 10) ្ន (08, 10) (T3, TZ) 6 (04, 09) 09, 11 6 3, 90 (11, 15) (15, 16) (02, 13) (03, 13) (04, 13) (05, 14) (06, 14) (07, 14) (10, 15) (12, 15) (14, 16) 7 E ŧ 80

Sezione di Catania

Istituto Nazionale di Fisica Nucleare –

Each pad is overlapped with 4 strips: Schematic of the 64 telescopes

 ΔE -E spectrum for one pseudo-telescope: Z = 1, 2, 3 isotopes are clearly separated. Particles are identified in charge and mass with energies as low as 1.2 MeV.

OSCAR is a modular detector!

2000

(15, 08)

(16, 12)

(16, 16)

One can combine different OSCAR units in order to obtain more advanced set-ups.

Performances

OSCAR is a modular detector!

One can combine different OSCAR units in order to obtain more advanced set-ups.

¹²C Hoyle decay – how has OSCAR helped?

<u>3-α process (DD)</u> ${}^{12}C_H \rightarrow \alpha + \alpha + \alpha$

α particles angular correlation to discriminate the two mechanisms

 $\alpha + \alpha$

Sequential decay (SD)

 $^{12}C_{H} \rightarrow {}^{8}Be + \alpha$

Need of a high granularity and highresolution correlator

Contradictory results

Direct ReactionsHeavy-ion collisionsSmall number of degrees of freedom \checkmark \checkmark \checkmark \checkmark \checkmark \sim 0.043% \leftarrow DD to SD
Br. Ratio \sim 17%

In-medium or reaction mechanism effects?

Discrimination between the two processes

Reconstructed ¹²C ex. Energy spectrum: very high signal-to-noise ratio for the Hoyle peak \rightarrow 3.6 x 10⁻⁴

Experimental Data (a) Exp. Data (b) 100% SD (c) 100% DDΦ Seguential Decay (SD) 100% 10³ **Energy distribution for the** largest of the three α particles stung normalized energies: experimental data perfectly 10 follow up simulated data for a 100% SD process. **Overlap** 1 0.3 0.4 0.5 0.6 0.7 Dalitz plots clearly show how the experimental data are ε_i better justified with the assumption of the SD process as the main decay pathway. DDD upper limit: 0.043% (C.L. 95%)

Further reading → D. Dell'Aquila, Phys. Rev. Lett. 119 (2017) 132501.

α s from moving sources and isotopic/isobaric yields

 α particles spectrum for the ⁴⁸Ca ⁴⁸Ca reaction at 35 AMeV

Very low energy threshold in HIC

Possibility of identifying the slowest α particles, from the QT moving source

 Cumulative Maxwellian moving sources fit of the three contributions (QP, QT, MV)

Isotopic and isobaric yields are proportional to the $\left(\frac{N}{Z}\right)_{tot}$, for the following systems

1.35

1.4

Neutron-richer isotopes isobars or are produced (and detected) with higher yield from neutron-rich collision (especially for tritium and helium-3.

Further reading \rightarrow D. Dell'Aquila, Phys. Rev. Lett. 119 (2017) 132501.

Relative energy invariant mass spectrum

5 cm BEAM

Four OSCAR modules in the HELICA configuration for the study of the ${}^{3}He + {}^{13}C \rightarrow {}^{12}C + {}^{4}He$ reaction at LNL (Italy)

> Every module had a different position, number of stages, and cover layer (Mylar Net or Aluminum, with different thickness)

 $E(^{3}He) = 1.4 - 2.2 MeV$

20 KeV energy steps

Provided new data for ³He(¹³C) reaction at under-barrier energies (very few available)

Very low energy threshold \rightarrow identification of each reaction channel.

 ${}^{3}He + {}^{13}C \rightarrow {}^{14}N + {}^{2}H$

Including the deuteron channel, never seen before!

Preliminary results from the HELICA experiment

Sizeable evolution of the shape of the angular distributions with energy → contributions from resonances on a direct background

Studied for the α_0 , α_1 and α_2 channels

Less pronounced variations for the α_2 channel!

Femtoscopy and possible OSCAR application

S.E. Koonin, PLB70 (1977) 43; S.Pratt et al., PRC42 (1990) 2646

How can OSCAR be exploited in the femtoscopy field?

Plan to perform new measurements, not explored in the last 30 years

Pre-formed clusters decay Or Independent emission and FSI?

It is possible to see states from different nuclei, but difficult to extract information.

An improvement in data and modeling of statistical decays is very much needed (RIBs, exp. at higher energies, for Target-spectator emissions...)

Old measurement: Si-CsI(TI) telescope, $\Delta \theta \approx 4 \text{ deg}$

Thanks for your kind attention!