# A novel method for calculating Bose-Einstein correlation functions with Coulomb final-state interaction

<u>Márton Nagy</u> (together with: Máté Csanád, Aletta Purzsa, Dániel Kincses) (Eötvös University, Budapest)

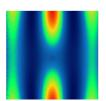
Based on: Eur. Phys. J. C 83 (2023) 11, 1015; arXiv: 2308.10745 (nucl-th)

Also see Aletta Purzsa's poster

# Zimányi School 2023

December 6, 2023







#### Outline

- Introduction
  - HBT correlations, Coulomb effect, basic formulas
  - Need for refinement: non-Gaussian sources, precision measurements
  - · Lévy sources in heavy ion collisions
- New method for treatment of Coulomb interaction
  - Numerical & methodological motivation
  - Calculation of the Coulomb integral kernel
  - Rigorous mathematics needed
  - Spherically symmetric case: limiting functional expressed
  - Implementation; esp. for Lévy-type sources
- Outlook
  - Ready to use in experimental analyses
  - · Generalizations: non-spherically symmetric case, strong interaction

#### Introduction

- Bose-Einstein-correlations of like particles ( $\pi^+\pi^+$ ,  $\pi^-\pi^-$ ,  $K^+K^+$ ...): measure fm-scale space-time extent of particle emitting source
- Some definitions:

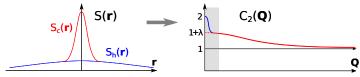
source function: 
$$S(x,\mathbf{p})$$
  
single part. distr.:  $N_1(\mathbf{p}) = \int \mathrm{d}x \, S(x,\rho)$   
pair wave function:  $\psi^{(2)}(x_1,x_2)$   
pair mom. distr.:  $N_2(\mathbf{p}_1,\mathbf{p}_2) = \int \mathrm{d}x_1 \, dx_2 \, S(x_1,p_1) S(x_2,p_2) \big| \psi^{(2)}(x_1,x_2) \big|^2$   
corr. function:  $C(\mathbf{p}_1,\mathbf{p}_2) = \frac{N_2(\mathbf{p}_1,\mathbf{p}_2)}{N_1(\mathbf{p}_1)N_1(\mathbf{p}_2)}$   
pair source:  $D(\mathbf{r},\mathbf{K}) = \int \mathrm{d}^4\rho \, S(\rho + \frac{r}{2},\mathbf{K}) \, S(\rho - \frac{r}{2},\mathbf{K})$ 

Approximately thus

$$C(\mathbf{k},\mathbf{K}) = \frac{\int D(\mathbf{r},\mathbf{K}) |\psi_{\mathbf{k}}(\mathbf{r})|^2 \mathrm{d}\mathbf{r}}{\int D(\mathbf{r},\mathbf{K}) \mathrm{d}\mathbf{r}}, \qquad \mathbf{K} := \frac{\mathbf{p}_1 + \mathbf{p}_2}{2}, \quad \mathbf{k} := \frac{\mathbf{p}_1 - \mathbf{p}_2}{2}.$$

#### Introduction

ullet Core-halo model for intercept parameter  $\lambda$  (Csörgő, Lörstad, Zimányi, Z. Phys. C 71, 491 (1996))



 $\lambda$  measures core fraction:  $S = \sqrt{\lambda}S_c + (1 - \sqrt{\lambda})S_h \Rightarrow \text{Bowler-Sinyukov formula:}$ 

$$\label{eq:for_state_state} \text{for ,,large"} \ \ S_{\textit{h}}, \textit{C}(\textbf{k},\textbf{K}) \!=\! 1 \!-\! \lambda \!+\! \lambda \frac{\int \! D_{\textit{c}}(\textbf{r},\textbf{K}) |\psi_{\textbf{k}}(\textbf{r})|^2 \mathrm{d}\textbf{r}}{\int \! D_{\textit{c}}(\textbf{r},\textbf{K}) \mathrm{d}\textbf{r}}.$$

• No final state interactions:  $C(\mathbf{k}) \equiv C^{(0)}(\mathbf{k})$ , Fourier transform of source

$$\left|\psi_{\mathbf{k}}^{(0)}(\mathbf{r})\right|^2 = 1 + \cos(2\mathbf{k}\mathbf{r}) \quad \Rightarrow \quad C^{(0)}(\mathbf{k}) = 1 + \lambda \frac{\int D_c(\mathbf{r}, \mathbf{K}) \cos(2\mathbf{k}\mathbf{r}) \mathrm{d}\mathbf{r}}{\int D_c(\mathbf{r}, \mathbf{K}) \mathrm{d}\mathbf{r}}.$$

• Final state Coulomb interaction:  $\psi^{(0)}$  replaced by solution of two-body Coulomb Schr. eq.; NR case: well known formulas (see below)

$$C^{(0)}(\mathbf{k}) = \frac{C(\mathbf{k})}{K(\mathbf{k})}, \quad K(\mathbf{k}) \equiv \frac{\int D_c(\mathbf{r}) |\psi_{\mathbf{k}}(\mathbf{r})|^2 d\mathbf{r}}{\int D_c(\mathbf{r}) |\psi_{\mathbf{k}}^{(0)}(\mathbf{r})|^2 d\mathbf{r}} \quad \text{Coulomb correction}$$

# Source types; Lévy source functions

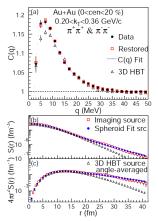
- Gaussian: usual choice;  $D_{cc}(\mathbf{r}) \propto \exp(-r_k r_l(\mathbf{R}^2)_{kl}^{-1})$ .
  - Fit parameters:  $R_{kl}(\mathbf{K})$  and  $\lambda(\mathbf{K})$
  - A generalization: Edgeworth expansion of C(k); in thisource: FT of C<sup>(0)</sup>(k) see eg. Csörgő, Hegyi, PLB 489, 15 (2000)
- Cauchy sources  $\Leftrightarrow$  exponential C(k); employed at CMS in pp collisions
- Lévy-type sources ( $C_{S\"org\"o}$ ,  $H_{egvi}$ ,  $Z_{ajc}$ , EPJ C 36, 67 (2004)): generalized Gaussian new parameter:  $\alpha \in \mathbb{R}^+$  stability index;  $\alpha \leq 2$ . Expression with a Fourier transform:

$$D_{cc}(\mathbf{r}) = \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} e^{i\mathbf{q}\mathbf{r}} \exp\left(-|\mathbf{q}R|^{\alpha}\right) \quad \Leftrightarrow \quad C_{2}^{(0)}(\mathbf{Q}) = 1 + \lambda \exp\left(-|\mathbf{Q}R|^{\alpha}\right).$$

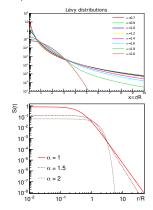
- Generalization: Levy polynomials (same as Edgeworth for Gaussians)
   Novák et al., Acta Phys. Polon. Supp. 9, 289 (2016)
- $\alpha$ =2: Gaussian;  $\alpha$ =1: Cauchy distribution;  $\alpha \neq 1, 2$ :  $D_{cc}(\mathbf{r})$  itself only numerically
- Possible reasons for of Lévy sources: all rest on stability (just as for Gaussian)
  - Fractal structure of jet fragmentation (Csörgő, Hegyi, Novák, Zajc, Acta Phys. Polon. B 36, 329 (2005))
  - Anomalous diffusion (Csanád, Csörgő, MN, Braz. J. Phys. 37, 1002 (2007))
  - Critical phenomena, closeness of CEP (Csörgő, Hegyi, Novák, Zajc, AIP Conf. Proc. 828, 525 (2006))
  - Event & directional averaging (Cimerman, Plumberg, Tomasik, Phys. Part. Nucl. 51, 282 (2020))
     However: event-by-event Lévy shape in EPOS simulation (Kincses, Stefaniak, Csanád, Entropy 24, 308 (2022))

# Lévy sources in heavy ion collisions

- Non-Gaussian behavior:
  - Source extraction (,,imaging")
     Brown, Danielewicz, PLB 398, 252 (1997)
  - PHENIX, PRL 98 (2007) 132301



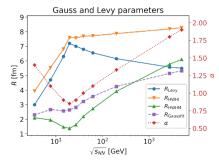
- ullet  $\Rightarrow$  experimental motivation for Lévy sources
  - For  $\alpha \neq 2$ , power law like  $r \to \infty$  decrease  $(\sim r^{-3-\alpha})$ ; no finite variance



 Meaning of Lévy R: through FWHM, FWHI (full width at half maximum/integral)

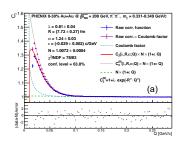
# Lévy sources in heavy ion collisions

- Need for precision investigations. . .
- Illustration (courtesy of M. Csanád, see talk at ISMD2023): ,,simulating" Lévy C(Q) with toy R and  $\alpha$ , fit with Gaussian



• Interplay of  $\alpha$  and R can hide interesting details, eg. non-monotonicity w.r.t.  $\sqrt{s_{NN}}$ , when fitting w/ Gaussians

 First Lévy HBT in heavy-ion collisions (PHENIX, PRC 97, 064911 (2018))



- $\alpha \neq 2$  confirmed  $m_t$ -independently
- Since then, done at several experiments
  - STAR (talk by D. Kincses)
  - CMS (talk by M. Csanád)
  - NA61 (talk by B. Pórfy')

- An essential ingredient for precision HBT measurements
- Non-relativistic treatment: valid in Pair Co-Moving System (PCMS).
- $\mathbf{p} = \hbar \mathbf{k}$ : relative momentum,  $E = \frac{p^2}{2m}$ , m: reduced mass
- Sommerfeld parameter (Coulomb parameter)  $\eta$ : ratio of classical closest distance  $r_0 \equiv \frac{q_e^2}{4\pi\varepsilon_0} \frac{1}{E}$  to wavelength  $\lambda \equiv \frac{2\pi\hbar}{n}$ :

$$\eta \equiv \alpha_{\rm em} \frac{mc}{\hbar k} = \frac{\pi r_0}{\lambda}, \quad {
m with} \quad \alpha_{\rm em} \equiv \frac{q_e^2}{4\pi\varepsilon_0} \frac{1}{\hbar c} \approx \frac{1}{137}.$$

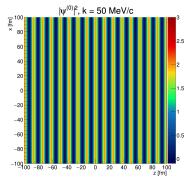
- Two-particle wave function: symmetrized scattering ,,out" state
  - ullet ,,out" states asymptotically plane wave + incoming spherical wave
  - alternate "in" state (plane wave + outgoing spherical wave) yields same results

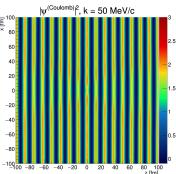
$$\psi^{(C)} = e^{i\mathbf{K}\mathbf{R}} \times \frac{\mathcal{N}^*}{\sqrt{2}} e^{-ikr} \left\{ M(1-i\eta, 1, i(kr+\mathbf{k}\mathbf{r})) + (\mathbf{k} \leftrightarrow -\mathbf{k}) \right\}.$$

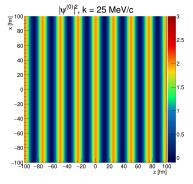
Making use of the M(a, b, z) confluent hypergeometric function

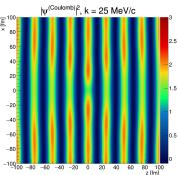
• Normalization ( $\mathcal{N}$ ) and Gamow factor ( $|\mathcal{N}|^2$ ):

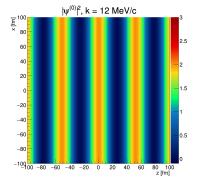
$$\mathcal{N}\!=\!e^{-\pi\eta/2}\Gamma(1\!+\!i\eta), \qquad |\mathcal{N}|^2\!=\!e^{-\pi\eta}|\Gamma(1\!+\!i\eta)|^2\!=\!\frac{2\pi\eta}{e^{2\pi\eta}\!-\!1}.$$

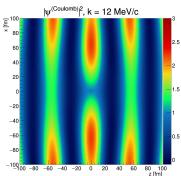


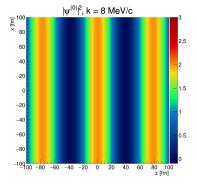


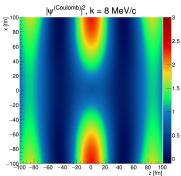




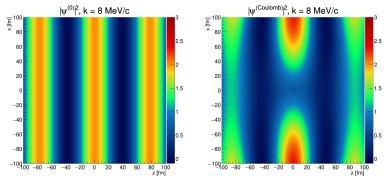




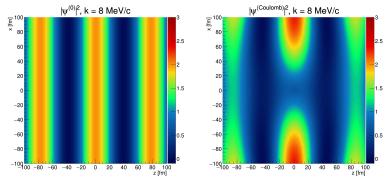




Coulomb wave function: distorted plane wave, asymptotically logarithmic corrections



• Gamow correction captures only the value at the origin



- Gamow correction captures only the value at the origin
- Calculational methods:
  - Direct integrating  $D(\mathbf{r})|\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2$  during fit: time-consuming, even nowadays
  - Pre-calculate a "Coulomb correction" with fix parameters (say,  $R=5\,\mathrm{fm}$  Gaussian): fast but inconsistent
  - Use iterative method, use memory lookup table...

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$ ...
  - Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of  $C_2({f Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{k}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \! \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$ ...
  - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$ ...
  - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{k}}^{(2)}(\mathbf{r})$ ...
  - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_2(\mathbf{Q}) = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^3} \int \! \mathrm{d}^3 \mathbf{r} \int \! \mathrm{d}^3 \mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \stackrel{??}{=}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \end{split}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of  $C_2({f Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$ ...
  - Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$C_{2}(\mathbf{Q}) = \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int d^{3}\mathbf{q} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{r} \int d^{3}\mathbf{q} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int d^{3}\mathbf{q} \int d^{3}\mathbf{r} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} =$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of  $C_2({f Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \! \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \! \int \! \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \! = \! \frac{1}{(2\pi)^{3}} \! \int \! \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \! \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \! \int \! \mathrm{d}^{3}\mathbf{q} \int \! \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \! = \\ &= \frac{1}{(2\pi)^{3}} \! \int \! \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \! \int \! \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \end{split}$$

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} = \\ &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \int \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} & \checkmark \checkmark \checkmark \checkmark \end{split}$$

• Many (if not all) interesting source types defined as Fourier transforms

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{L}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: "interchange order of "integrals"

Not working in this form

Many (if not all) interesting source types defined as Fourier transforms

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^{3}\mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- ullet Direct numerical calculation of  $C_2({f Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then "almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

Not working in this form: Fourier transform ≠ integral (Lebesgue)

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} = \\ &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \int \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} & \checkmark \checkmark \checkmark \end{split}$$

- $\bullet \ \, \text{Not working in this form: Fourier transform} \neq \text{integral (Lebesgue)} \\$ 
  - Workaround: regularization,  $\lambda \in \mathbb{R}^+$ , then  $\lambda \to 0$ .

$$D(\mathbf{r}) := \int \frac{\mathrm{d}^3 \mathbf{q}}{(2\pi)^3} f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} \quad \Leftrightarrow \quad f(\mathbf{q}) = \int \mathrm{d}^3 \mathbf{r} D(\mathbf{r}) e^{-i\mathbf{q}\mathbf{r}}$$

- In many cases (eg. Lévy sources), even this is possible only numerically
- Direct numerical calculation of  $C_2(\mathbf{Q})$  thus (although used) very problematic
  - Slow decrease of  $D(\mathbf{r})$ , oscillating asymptotic  $\psi_{\mathbf{r}}^{(2)}(\mathbf{r})$ ...
- Awkward: Fourier transform, then ,,almost inverse" Fourier transform, numerically...
- Natural idea: ,,interchange order of ,,integrals"

$$\begin{split} C_{2}(\mathbf{Q}) &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} = \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{r} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} \stackrel{??}{=} \\ &\stackrel{??}{=} \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \int \mathrm{d}^{3}\mathbf{r} \, f(\mathbf{q}) e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} = \\ &= \frac{1}{(2\pi)^{3}} \int \mathrm{d}^{3}\mathbf{q} \, f(\mathbf{q}) \int \mathrm{d}^{3}\mathbf{r} \, e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} & \checkmark \checkmark \checkmark \end{split}$$

- Not working in this form: Fourier transform  $\neq$  integral (Lebesgue)
  - Workaround: regularization,  $\lambda \in \mathbb{R}^+$ , then  $\lambda \to 0$ .
  - Careful math needed (once in a physicist's lifetime...)

• Interchanging our integrals in a careful way:

 $C_2(\mathbf{Q})$ 

$$C_2(\mathbf{Q}) = \int d^3 \mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_2(\mathbf{Q}) = \int d^3\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r}) = \int d^3\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_2(\mathbf{Q}) = \int \!\! \mathrm{d}^3 \mathbf{r} \, |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r}) = \int \!\! \mathrm{d}^3 \mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 \, D(\mathbf{r})$$

$$C_2(\mathbf{Q}) = \int d^3 \mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r}) = \int d^3 \mathbf{r} \lim_{\lambda \to 0} e^{-\lambda \mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^2 D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r})$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}}$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}}$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}}$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} =$$

$$= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

$$C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) =$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} =$$

$$= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

• Interchanging our integrals in a careful way:

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

,,Ingredients":

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
  - Conditions of (Lebesgue) integrability

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
  - Conditions of (Lebesgue) integrability
  - Lebesgue theorem (for interchanging integrals and limits)

$$\frac{C_{2}(\mathbf{Q}) = \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = }{= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = }$$

$$= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = }$$

$$= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
  - Conditions of (Lebesgue) integrability
  - Lebesgue theorem (for interchanging integrals and limits)
  - Fubini's theorem (for interchanging repeated integrals)

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
  - Conditions of (Lebesgue) integrability
  - Lebesgue theorem (for interchanging integrals and limits)
  - Fubini's theorem (for interchanging repeated integrals)
- In last step, cannot interchange  $\int d^3 \mathbf{q}$  and  $\lim_{\lambda \to 0}$ .

$$\frac{C_{2}(\mathbf{Q})}{=} \int d^{3}\mathbf{r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \int d^{3}\mathbf{r} \lim_{\lambda \to 0} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} D(\mathbf{r}) = \\
= \lim_{\lambda \to 0} \int d^{3}\mathbf{r} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) e^{-\lambda r} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2} e^{i\mathbf{q}\mathbf{r}} = \\
= \lim_{\lambda \to 0} \int \frac{d^{3}\mathbf{q}}{(2\pi)^{3}} f(\mathbf{q}) \int d^{3}\mathbf{r} e^{-\lambda r} e^{i\mathbf{q}\mathbf{r}} |\psi_{\mathbf{k}}^{(2)}(\mathbf{r})|^{2}.$$

- ,,Ingredients":
  - Conditions of (Lebesgue) integrability
  - Lebesgue theorem (for interchanging integrals and limits)
  - Fubini's theorem (for interchanging repeated integrals)
- In last step, cannot interchange  $\int d^3 \mathbf{q}$  and  $\lim_{\lambda \to 0}$ .
- As of now, continuing only in the spherically symmetric case:

$$f(\mathbf{q}) \equiv f_s(q), \ D_{cc}(r) = 2\pi \int_0^\infty \mathrm{d}q \ q^2 \sin(qr) f_s(q).$$

# Details of derivation (cont'd)

• After substituting  $\psi_{\bf k}^{(2)}({\bf r})$ , "master" formula thus reads as

$$\begin{split} C_2(Q) &= \frac{|\mathcal{N}|^2}{2\pi^2} \lim_{\lambda \to 0} \int_0^\infty q^2 f_s(q) \Big[ \mathcal{D}_{1\lambda s}(q) + \mathcal{D}_{2\lambda s}(q) \Big], \qquad \text{where} \\ \mathcal{D}_{1\lambda s}(q) &= \int \mathrm{d}^3 \mathbf{r} \frac{\sin(qr)}{qr} e^{-\lambda r} M\big(1 + i\eta, 1, -i(kr + \mathbf{kr})\big) M\big(1 - i\eta, 1, i(kr + \mathbf{kr})\big), \\ \mathcal{D}_{2\lambda s}(q) &= \int \mathrm{d}^3 \mathbf{r} \frac{\sin(qr)}{qr} e^{-\lambda r} M\big(1 + i\eta, 1, -i(kr - \mathbf{kr})\big) M\big(1 - i\eta, 1, i(kr + \mathbf{kr})\big). \end{split}$$

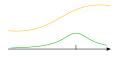
 These can be calculated (using complex analysis; method pioneered by Nordsieck in the theory of bremsstrahlung & pair creation)

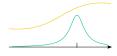
A. Nordsieck, Phys. Rev. 93, 785 (1954).

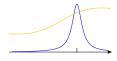
$$\begin{split} &\mathcal{D}_{1\lambda s}(q) \!=\! \frac{4\pi}{q} \mathrm{Im} \bigg[ \frac{1}{(\lambda \!-\! iq)^2} \Big( 1 \!+\! \frac{2k}{q \!+\! i\lambda} \Big)^{2i\eta} \mathcal{F}_+ \Big( \frac{4k^2}{(q \!+\! i\lambda)^2} \Big) \bigg], \\ &\mathcal{D}_{2\lambda s}(q) \!=\! \frac{4\pi}{q} \mathrm{Im} \bigg[ \frac{(\lambda \!-\! iq \!-\! 2ik)^{i\eta} (\lambda \!-\! iq \!+\! 2ik)^{-i\eta}}{(\lambda \!-\! iq)^2 \!+\! 4k^2} \bigg], \end{split}$$

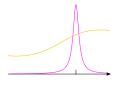
Here  $\mathcal{F}_{+}(x) \equiv {}_{2}F_{1}(i\eta, 1+i\eta, 1, x)$  is the hypergeometric function

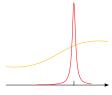
- For  $\lim_{\lambda \to 0}$ , function forms of  $\mathcal{D}_{1\lambda s}$ ,  $\mathcal{D}_{2\lambda s}$  become "ill-behaved"
- Need to calculate & simplify  $\lambda \to 0$  limit (numerical limit-taking. . .  $\Rightarrow \$ ?)

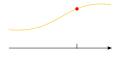




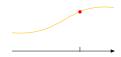




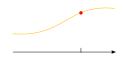




• A remark: approximation of  $\delta(x)$  Dirac delta: a well known simpler similar case



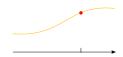
• A remark: approximation of  $\delta(x)$  Dirac delta: a well known simpler similar case



• In our case, result of the calculation is

•  $\eta \rightarrow 0$ : free  $C_2^{(0)}(Q) = 1 + f_s(Q)$  recovered (NB: Q = 2k)

• A remark: approximation of  $\delta(x)$  Dirac delta: a well known simpler similar case



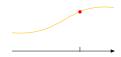
$$C_{2}(Q) = |\mathcal{N}|^{2} \left( 1 + f_{s}(2k) + \frac{\eta}{\pi} \left[ \mathcal{A}_{1s} + \mathcal{A}_{2s} \right] \right), \quad \text{where}$$

$$\mathcal{A}_{1s} = -\frac{2}{\eta} \int_{0}^{\infty} \frac{f_{s}(q) - f_{s}(0)}{q} \operatorname{Im} \left[ \left( 1 + \frac{2k}{q} \right)^{2i\eta} \mathcal{F}_{+} \left( \frac{4k^{2}}{q^{2}} - i0 \right) \right],$$

$$\mathcal{A}_{2s} = -\frac{2}{\eta} \int_{0}^{\infty} \frac{f_{s}(q) - f_{s}(2k)}{q - 2k} \frac{q}{q + 2k} \operatorname{Im} \frac{(q + 2k)^{i\eta}}{(q - 2k + i0)^{i\eta}}.$$

- $\eta \to 0$ : free  $C_2^{(0)}(Q) = 1 + f_s(Q)$  recovered (NB: Q = 2k)
- $|\mathcal{N}|^2$  factor only: Gamow correction

• A remark: approximation of  $\delta(x)$  Dirac delta: a well known simpler similar case



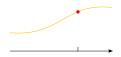
- $\eta \rightarrow 0$ : free  $C_2^{(0)}(Q) = 1 + f_s(Q)$  recovered (NB: Q = 2k)
- $|\mathcal{N}|^2$  factor only: Gamow correction  $\Rightarrow$   $\mathcal{A}_{1s}$ ,  $\mathcal{A}_{2s}$  ,,correct the Gamow correction"

• A remark: approximation of  $\delta(x)$  Dirac delta: a well known simpler similar case



- $\eta \rightarrow 0$ : free  $C_2^{(0)}(Q) = 1 + f_s(Q)$  recovered (NB: Q = 2k)
- $|\mathcal{N}|^2$  factor only: Gamow correction  $\Rightarrow$   $\mathcal{A}_{1s}$ ,  $\mathcal{A}_{2s}$  ,,correct the Gamow correction"
- $A_{1s}$  and  $A_{2s}$ : not proper integral transforms but well-defined functionals of  $f_s(q)$

ullet A remark: approximation of  $\delta(x)$  Dirac delta: a well known simpler similar case

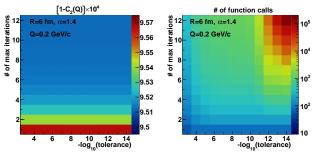


$$\begin{split} C_2(Q) &= |\mathcal{N}|^2 \bigg( 1 + f_s(2k) + \frac{\eta}{\pi} \big[ \mathcal{A}_{1s} + \mathcal{A}_{2s} \big] \bigg), \quad \text{where} \\ \mathcal{A}_{1s} &= -\frac{2}{\eta} \int_0^\infty \!\!\!\! dq \, \frac{f_s(q) - f_s(0)}{q} \mathrm{Im} \bigg[ \bigg( 1 + \frac{2k}{q} \bigg)^{2i\eta} \mathcal{F}_+ \Big( \frac{4k^2}{q^2} - i0 \Big) \bigg], \\ \mathcal{A}_{2s} &= -\frac{2}{\eta} \int_0^\infty \!\!\!\!\!\! dq \, \frac{f_s(q) - f_s(2k)}{q - 2k} \frac{q}{q + 2k} \mathrm{Im} \frac{(q + 2k)^{i\eta}}{(q - 2k + i0)^{i\eta}}. \end{split}$$

- $\eta \rightarrow 0$ : free  $C_2^{(0)}(Q) = 1 + f_s(Q)$  recovered (NB: Q = 2k)
- $|\mathcal{N}|^2$  factor only: Gamow correction  $\Rightarrow$   $\mathcal{A}_{1s}$ ,  $\mathcal{A}_{2s}$  ,,correct the Gamow correction"
- ullet  $\mathcal{A}_{1s}$  and  $\mathcal{A}_{2s}$ : not proper integral transforms but well-defined functionals of  $f_s(q)$ 
  - ullet Care needed about branch cuts  $(\pm i0 \ {
    m terms})$  of  $\mathcal{F}_+(x)$  and complex powers

# Numerical implementation

- Final numerical integrals needed: in  $A_{1\lambda s}$  and  $A_{2\lambda s}$
- Transform integral to  $x \in [0,1] \Rightarrow$  smooth, ",beautiful" integrands
- Gauss-Krohnrod quadrature (from C++ boost library) used:
  - Main parameters: # of max iterations & tolerance
  - Investigated; optimal value found: few hundred integrand evaluations (instead of many 10000-s)



- Real-time calculation (during fit procedure) possible!
- Codes archived at: github.com/csanadm/CoulCorrLevyIntegral

# Example calculations: illustrations

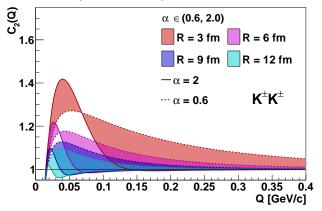
• For Lévy sources, for pion  $(\pi^+\pi^+, \pi^-\pi^-)$  pairs:



- most frequent target of HBT measurements
- Shaded region ,,swept" over by  $C_2(Q)$  as  $\alpha$  changes
- Apparent "nodes" disappear with increased zooming in

# Example calculations: illustrations

• For Lévy sources, for kaon  $(K^+K^+, K^-K^-)$  pairs:



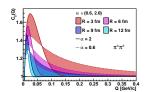
- Similarly to the case of pions; "nodes" are only apparent
- Coulomb effect stronger ( $m_K > m_\pi$ ;  $\eta$  increases)
- Considerable interplay of experimentally measurable  $\lambda$ , R,  $\alpha$

# Summary and outlook

- Efficient new method for Coulomb interacting HBT correlation function calculation
  - Calculations directly in momentum (Fourier) space
  - Distribution theory motivated careful mathematical methods invoked
  - Cross-checked with previous direct calculations
  - Numerical implementation done, ready for use in data analysis
- As of now, implementation only for spherically symmetric sources
  - Prospective generalization I: go beyond spherical symmetry This is where efficiency becomes crucial...
  - Prospective generalization II: short-range final state strong interactions
     Usual treatment: only s-wave (1 parameter: strong scattering length f<sub>0</sub>)
     For a direct calculation for Lévy sources, see: Kincses, MN, Csanád, PRC 102, 064912 (2020)
  - Prospective generalization (in fact, simplification) for non-identical particle correlations: only  $\mathcal{D}_{1\lambda_5}$  (ie.  $\mathcal{A}_{15}$ ) term needed

\*\*\*

New exact analytic formulas for QM Coulomb problem! ©



Thank you for your attention!

