Hybrid star phenomenology from the properties of the special point Zimányi School

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

7th December 2023

Paper: https://arxiv.org/abs/2301.10765 accepted by PRD

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

CFisUC

- 2 Building up an NS
- **3** Properties of M-R curves \Rightarrow The Special Point

4 Conclusion

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point *Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

< 口 > < 同 >

- 3 Properties of M-R curves \Rightarrow The Special Point

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

< 🗇 🕨

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
○●○○○	00000000000		0000	000000
Mhat are N	15.2			

Evolution of Stars:

Evolution governed by the mass

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point *Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

4 / 35

oct Stars	Building up an NS 0000000000	Properties of M-R curves \Rightarrow The Special Point 0000000		Conclusion 0000	Backı 0000
		Neutron star	White dwarf	Sun	
-	$M_{max}(M_{\odot})$	2	1.44	1	
-	R (km)	11-12	10 ⁴	$7 \cdot 10^5$	
-	$n_c (g/cm^3)$	$10^{14} - 10^{15}$	107	10^{2}	
-	rotation speed (s)	$10^{-3} - 1$	100	$2 \cdot 10^{6}$	
-	B (G)	$10^8 - 10^{16}$	100	1	
-	T (K)	$10^{6} - 10^{11}$	10^{3}	10 ⁵	

Table including Neutron star properties

NS compared to city

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

< A

Hybrid star phenomenology from the properties of the special point

Comp:

Backup 000000

Why are Compact Stars as Neutron Stars (NS) important for this School?

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Hybrid star phenomenology from the properties of the special point

Backup 000000

Why are Compact Stars as Neutron Stars (NS) important for this School?

• different possible composition of Neutron Stars (NS)

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Backup 000000

Why are Compact Stars as Neutron Stars (NS) important for this School?

- different possible composition of Neutron Stars (NS)
- one possibility: Quark Gluon Plasma in the core (including phase transition)

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Why are Compact Stars as Neutron Stars (NS) important for this School?

- different possible composition of Neutron Stars (NS)
- one possibility: Quark Gluon Plasma in the core (including phase transition)
 - \Rightarrow chance to probe QCD phase diagram with NS

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke *Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra Hybrid star phenomenology from the properties of the special point

Building up an NS 00000000000 Properties of M-R curves \Rightarrow The Special Point $_{0000000}$

int Con

Backup 000000

Hybrid star phenomenology from the properties of the special point

- 2 Building up an NS
- 4 Conclusion

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

< 口 > < 同 >

What do we need to obtain possible Neutron Star configurations?

⇒ Tolmann-Oppenheimer-Volkoff Equations (spherical symmetric and gravitational equilibrated objects)

$$\frac{dp}{dr} = -(\varepsilon + p)\frac{m + 4\pi r^3}{r^2 - 2rm},$$
$$\frac{dm}{dr} = 4\pi r^2 \varepsilon$$

 \Rightarrow need $p(\varepsilon) \Rightarrow$ need full EOS \Rightarrow Hybrid EOS

<u>Christoph Gärtlein*</u>, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

How to build up an NS with Equations of State?

Assumption: We work with a **First order Phase Transition** between Hadronic and Quark Gluon Phase

- <u>Hadronic Phase</u>: DD2npY-T model including neutrons, protons and hyperonic degrees of freedom Shahrbaf, Blaschke+(2022)
- <u>Quark matter:</u> confining relativistic density functional approach _{Ivanytskyi,Blaschke} (2022)

 \Rightarrow encoded in underlying Lagrangian

Relativistic density functional for quark matter EOS

$$\mathcal{L} = \overline{q}(i\partial \!\!\!/ - \hat{m})q + \mathcal{L}_{PS} + \mathcal{L}_V + \mathcal{L}_D$$

● Pseudoscalar interaction ⇒ chiral dynamics

$$\mathcal{L}_{PS} = \mathit{G}_{0}\left[(1+lpha)\langle\overline{q}q
angle_{0}^{2}-(\overline{q}q)^{2}-(\overline{q}iec{ au}\gamma_{5}q)^{2}
ight]^{rac{1}{3}}$$

• Vector interaction \Rightarrow repulsion

$${\cal L}_V = -G_V (\overline{q} \gamma_\mu q)^2$$

■ Diquark pairing ⇒ color superconductivity

$$\mathcal{L}_D = \mathcal{G}_D \sum_{A=2,5,7} (\overline{q} i \gamma_5 au_2 \lambda_A q^c) (\overline{q}^c i \gamma_5 au_2 \lambda_A q)$$

- Comparison to NJL model
 - medium dependent scalar G_S and pseudoscalar G_{PS} couplings
 - high vacuum quark mass \Rightarrow phenomenological confinement
 - quark correlations \Rightarrow mesons: $\pi, \sigma = \sim$

Details in:

Ivanytskyi, Blaschke, PRD (2022) Ivanytskyi, Blaschke, Particles (2022)

Building up an NS

Properties of M-R curves \Rightarrow The Special Point 0000000

Point

on

Backup 000000

Model parameters

• Pseudoscalar interaction channel \mathcal{L}_{PS}

relevant to vacuum phenomenology (chiral condensate & meson properties)

<i>m</i> [MeV]	Λ [MeV]	α	$D_0 \Lambda^{-2}$
4.2	573	1.43	1.39
M_{π} [MeV]	F_{π} [MeV]	M_{σ} [MeV]	$\langle \bar{I}I \rangle_0^{1/3}$ [MeV]
140	92	980	-267

Pseudocritical temperature

 $T_c = 163 \text{ MeV}$

- low T: 2m_{quark} > M_π, M_σ (stable mesons, confined quarks)
- high T: 2m_{quark} < M_π, M_σ (unstable mesons, deconfined quarks)
- Vector & diquark interaction channels \mathcal{L}_V & \mathcal{L}_D

parameterized by the dimensionless couplings $\eta_V\equiv {\it G}_{0V}/{\it G}_{S0}$ & $\eta_D\equiv {\it G}_{0D}/{\it G}_{S0}$

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

O. Ivanytskyi, D. Blaschke, Particles 5 (4), 514-534 (2022)

Motivated by non-perturbative massive gluon exchange

Y. Song, G. Baym, T. Hatsuda, and T. Kojo Phys. Rev. D 100, 034018 (2019)

• Provide asymptotic conformal behavior (c_S^2 ightarrow 1/3, $\delta = 1/3 - {\sf p}/arepsilon ightarrow$ 0)

Rearrangement terms in pressure ensure thermodynamic consistency.

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS 000000●0000	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion 0000	Backup 000000
ABPR para	metrization			

 Extention of the bag pressure model accounting for the perturbative QCD correction to pressure and effects of quark

pairing M. Alford, M. Braby, M. W. Paris, and S. Reddy, Astrophys. J. 629, 969 (2005),

$$p = \frac{3A_4\mu^4}{4\pi^2} + \frac{3\Delta^2\mu^2}{\pi^2} - B$$
(1)

i	units	ai	bi	Ci	di	ei	
1		0.757	-1.955	1.799	-0.063	0.046	
2	[MeV]	300.7	8.534	-308.2	-0.235	1.458	
3	$[MeV/fm^3]$	72.018	170.8	-241.0	512.7	-626.6	
$A_{4} = a_{1} + b_{1}\eta_{V} + c_{1}\eta_{V}^{2} + \left(d_{1} + \frac{e_{1}}{\eta_{V}}\right)\eta_{D}, \qquad (2)$							
	$\Delta = ($	$a_2 + b_2 \eta_V$	$(+c_2\eta_V^2)$	$\sqrt{d_2+\epsilon}$	$e_2\eta_V + \eta_L$	- -, (3	3
	B = a	$_3 + b_3 \eta_V$	$+ c_3 \eta_V^2 +$	$+ d_3 \eta_D +$	$e_3 \eta_D^2$.	(4	4
				• 1		E ► < E ► - 3	æ

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	000000000000		0000	000000
ABPR para	ametrization			

ABPR parametrization Fitting couplings

 remarkable agreement between RDF approach (solid lines) and the ABPR parametrization (dots) !!!

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000	Conclusion	Backup
00000	ooooooooooooo		0000	000000
NA 11				

Maxwell construction

• <u>Maxwell construction</u>: intersection of both functions $p(\mu)$

$$p_{Hadron}(\mu_c) = p_{Quark}(\mu_c) \Rightarrow \mu_c \tag{5}$$

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Maxwell construction

- typical plateau of first order phase transition
- But: inside star, no shell of mixed phase ⇒ narrow

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Compact Stars Building up an NS Properties of M-R curves \Rightarrow The Special Point

From EOS to M-R curves

dm dr Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke *Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra Hybrid star phenomenology from the properties of the special point

18 / 35

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point	Conclusion	Backup
00000	0000000000	\bullet 000000	0000	000000

2 Building up an NS

3 Properties of M-R curves \Rightarrow The Special Point

4 Conclusion

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Properties of M-R curves \Rightarrow The Special Point $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

al Point

Conclusion Dooo Backup 000000

Mass-Radius curves and its properties

 each point is a NS configuration

M-R diagram for η_V, η_D -combinations, Gärtlein+ 2023

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Properties of M-R curves \Rightarrow The Special Point 000000

Mass-Radius curves and its properties

- each point is a NS configuration
- astrophysical constraints in the background

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Building up an NS 00000000000 Properties of M-R curves \Rightarrow The Special Point 000000

Point (

ion

Mass-Radius curves and its properties

- each point is a NS configuration
 - astrophysical constraints in the background
- plots for different combinations of (η_V, η_D)

M-R diagram for η_V, η_D -combinations, Gärtlein+ 2023

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

000000000000

Properties of M-R curves \Rightarrow The Special Point 000000

Mass-Radius curves and its properties

- each point is a NS configuration
 - astrophysical constraints in the background
- plots for different combinations of (η_V, η_D)
- point of leaving the black curve \Rightarrow deconfinement phase transition

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

 Compact Stars
 Building up an NS
 Properties of M-R curves ⇒ The Special Point
 Conclusion
 Backup

 00000
 00000
 00000
 00000
 00000
 00000

Deconfinement phase transition

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

• certain combination of (η_V, η_D) give point of phase transition

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Hybrid star phenomenology from the properties of the special point

 Compact Stars
 Building up an NS
 Properties of M-R curves ⇒ The Special Point
 Conclusion
 Backup

 00000
 000000
 000000
 000000

Deconfinement phase transition

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

- certain combination of (η_V, η_D) give point of phase transition
- fixed η_V : smaller diquark coupling \Rightarrow later deconfinement

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Deconfinement phase transition

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

- certain combination of (η_V, η_D) give point of phase transition
- fixed η_V : smaller diquark coupling \Rightarrow later deconfinement
- larger $\eta_D \Rightarrow$ earlier phase transition but greater maximum mass

<u>Christoph Gärtlein*</u>, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000	Conclusion	Backup
00000	00000000000		0000	000000

Maximum mass

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

 curves greater vector repulsion ⇒ higher maximum masses

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000	Conclusion	Backup
00000	00000000000		0000	000000

Maximum mass

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

- curves greater vector repulsion
 ⇒ higher maximum masses
- in general combination fixes maximum mass

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	00000000000		0000	000000

Maximum mass

M-R diagram for η_V , η_D -combinations, Gärtlein+ 2023

- curves greater vector repulsion ⇒ higher maximum masses
- in general combination fixes maximum mass
- higher vector repulsion \Rightarrow stiffer EOS \Rightarrow higher masses

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS 00000000000	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion 0000	Backup 000000

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

• keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	00000000000		0000	000000

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

- keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"
- actually, a small vicinity of all curves intersecting

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	00000000000		0000	000000

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

- keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"
- actually, a small vicinity of all curves intersecting
- macroscopic behaviour (M R) governed by microscopic parameters

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	00000000000		0000	000000

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

- keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"
- actually, a small vicinity of all curves intersecting
- macroscopic behaviour (M R) governed by microscopic parameters
- empirical relation:

 $M_{Max} = M_{SP} + \delta |M^*_{onset} - M_{onset}|^2$

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point
Compact Stars	Building up an NS 00000000000	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion 0000	Backup 000000

The Special points

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

- keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"
- actually, a small vicinity of all curves intersecting
- macroscopic behaviour (M R) governed by microscopic parameters
- empirical relation:

 $M_{Max} = M_{SP} + \delta |M_{onset}^* - M_{onset}|^2$

 relates observable quantities (*M_{Max}*, *M_{onset}*)

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Compact Stars	Building up an NS 00000000000	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion 0000	Backup 000000

The Special points

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

- keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"
- actually, a small vicinity of all curves intersecting
- macroscopic behaviour (M R) governed by microscopic parameters
- empirical relation:

 $M_{Max} = M_{SP} + \delta |M_{onset}^* - M_{onset}|^2$

 relates observable quantities (*M_{Max}*, *M_{onset}*)

 \Rightarrow fixing parameters by data fit

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS 00000000000	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion 0000	Backup 000000

The Special points

M-R diagram for η_V , η_D -combinations, Gärtlein+2023

- keeping η_V fixed (same color) \Rightarrow all curves seem to intersect in "point"
- actually, a small vicinity of all curves intersecting
- macroscopic behaviour (M R) governed by microscopic parameters
- empirical relation:

 $M_{Max} = M_{SP} + \delta |M_{onset}^* - M_{onset}|^2$

• relates observable quantities (M_{Max}, M_{onset})

 $\Rightarrow \text{ fixing parameters by data fit} \\ \mathcal{M}^*_{onset} = 1.254 M_{\odot}, \ \delta = k_{\delta} \eta_V + b_{\delta} \\ \text{where } k_{\delta} = -0.096 \ \mathrm{M}_{\odot}^{-1} \text{ and} \\ b_{\delta} = 0.093 \ \mathrm{M}_{\odot}^{-1} \\ * \Box \models * \textcircled{O} \models * \textcircled{O} = * \textcircled{O} \Rightarrow * \textcircled{O} \models * \textcircled{O} = * \textcircled{O}$

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke *Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Use of Emperical Relation

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints, Gärtlein+ 2023

Constraints

TOV instability

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Use of Emperical Relation

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints, Gärtlein+ 2023

Constraints

- TOV instability
- no phase transition before n_{sat}

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Compact Stars Properties of M-R curves \Rightarrow The Special Point 0000000

Use of Emperical Relation

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints, Gärtlein+ 2023

Constraints

- TOV instability
- no phase transition before n_{sat}
- vacuum stable against color-superconductivity

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars Properties of M-R curves \Rightarrow The Special Point 0000000

Use of Emperical Relation

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints, Gärtlein+ 2023

Constraints

- TOV instability
- no phase transition before n_{sat}
- vacuum stable against color-superconductivity
 - \Rightarrow further restricting couplings:

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Properties of M-R curves \Rightarrow The Special Point 0000000

Use of Emperical Relation

Compact Stars

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints, Gärtlein+ 2023

Constraints

- TOV instability
- no phase transition before n_{sat}
- vacuum stable against color-superconductivity
 - \Rightarrow further restricting couplings:
 - \Rightarrow fix η_V with vector meson mass (ω -meson)

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Properties of M-R curves \Rightarrow The Special Point 0000000

Use of Emperical Relation

Compact Stars

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints, Gärtlein+ 2023

Constraints

- TOV instability
- no phase transition before n_{sat}
- vacuum stable against color-superconductivity
 - \Rightarrow further restricting couplings:
 - \Rightarrow fix η_V with vector meson mass (ω -meson)

$$M_\omega = 782 \,\mathrm{MeV}
ightarrow \eta_V = 0.452$$

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Properties of M-R curves \Rightarrow The Special Point 0000000

Use of Emperical Relation

Compact Stars

This pretty accurate relation allows us to constrain the couplings of the guark matter !!

Constraints

- TOV instability
- no phase transition before n_{sat}
- vacuum stable against color-superconductivity

 \Rightarrow further restricting couplings:

 \Rightarrow fix η_V with vector meson mass (ω -meson)

 $M_{\omega} = 782 \,\mathrm{MeV} \rightarrow \eta_V = 0.452$

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

 \Rightarrow narrow range for η_D $\approx (0.775 - 0.78)$

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000	Conclusion	Backup
00000	00000000000		0000	000000

Implications

Including ω -mass, Gärtlein+ 2023

 in good agreement with astrophysical constraints

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000	Conclusion	Backup
00000	00000000000		0000	000000

Implications

Including ω -mass, Gärtlein+ 2023

- in good agreement with astrophysical constraints
- special point \Rightarrow blue dot

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000 $ullet$	Conclusion	Backup
00000	00000000000		0000	000000

Implications

Including ω -mass, Gärtlein+ 2023

- in good agreement with astrophysical constraints
- special point \Rightarrow blue dot
- in agreement with black widow pulsar ⇒ green bar

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

1 Compact Stars

- 2 Building up an NS
- igstarrow Properties of M-R curves \Rightarrow The Special Point

4 Conclusion

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point *Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

 phenomenological EOS ⇒ in agreement with astrophysical constraints (including deconfinement and color superconductivity)

- phenomenological EOS ⇒ in agreement with astrophysical constraints (including deconfinement and color superconductivity)
- **2** ABPR parametrization enables numerical advantages

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		○●○○	000000
Conclusion				

- phenomenological EOS ⇒ in agreement with astrophysical constraints (including deconfinement and color superconductivity)
- **2** ABPR parametrization enables numerical advantages
- ${\color{black}{\bullet}}$ interesting behaviour: Variation of η_D while fixing η_V
 - \Rightarrow Family of Hybrid EOS
 - \Rightarrow M-R curves intersect in Special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point	Conclusion	Backup
00000	0000000000		0●00	000000
Conclusion				

- phenomenological EOS ⇒ in agreement with astrophysical constraints (including deconfinement and color superconductivity)
- **2** ABPR parametrization enables numerical advantages
- **3** interesting behaviour: Variation of η_D while fixing η_V
 - \Rightarrow Family of Hybrid EOS
 - \Rightarrow M-R curves intersect in Special point
- microscopic parameters govern special point (independent of hadronic EOS, due to First Order Phase Transition)

6 emperical relation allows us to constrain the onset mass (phase transition) ⇒ contraints on couplings

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

- 6 emperical relation allows us to constrain the onset mass (phase transition) ⇒ contraints on couplings
- 6 further constraints on η_V give small allowed range of M-R \Rightarrow massive NS in agreement with astrophyliscal constraints

- 6 emperical relation allows us to constrain the onset mass (phase transition) ⇒ contraints on couplings
- 6 further constraints on η_V give small allowed range of M-R \Rightarrow massive NS in agreement with astrophyliscal constraints
- 1 early deconfinement

- 6 emperical relation allows us to constrain the onset mass (phase transition) ⇒ contraints on couplings
- 6 further constraints on η_V give small allowed range of M-R \Rightarrow massive NS in agreement with astrophyliscal constraints
- @ early deconfinement
- (8) radial oscillations may give insights as well

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		000●	000000

Thank you for your attention. Please ask your questions.

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

Hybrid star phenomenology from the properties of the special point

1 Compact Stars

- 2 Building up an NS
- \bigcirc Properties of M-R curves \Rightarrow The Special Point
- 4 Conclusion

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

< (17) →

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 000000	Conclusion	Backup
00000	00000000000		0000	0●0000

Radial Oscillations

Different sources of forces on stars/NS can cause oscillations \Rightarrow radial oscillations \Rightarrow gravity as pullback force

Solve differential equations:

$$\xi \equiv \frac{\Delta r}{r}, \ \eta \equiv \frac{\Delta p}{p}$$

$$\frac{d\xi}{dr} = -\left(\frac{3}{r} + \frac{1}{\epsilon + p}\frac{dp}{dr}\right)\xi - \frac{\eta}{r\gamma},$$
(6)
$$\frac{d\eta}{dr} = \omega^{2}\left[\frac{\epsilon + p}{p}re^{(\lambda - \nu)}\right]\xi$$

$$-\left[\frac{4}{p}\frac{dp}{dr} + 8\pi(\epsilon + p)re^{\lambda} - \frac{r}{p(\epsilon + p)}\left(\frac{dp}{dr}\right)^{2}\right]\xi$$

$$-\left[\frac{\epsilon}{p(\epsilon + p)}\frac{dp}{dr} + 4\pi\zeta re^{\lambda}\right]\eta,$$
(7)

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	serve them?			

• radial mode
$$(n = 0) \Rightarrow$$
 f-mode

Hybrid star phenomenology from the properties of the special point

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

イロト イロト イヨト イヨ

2

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point	Conclusion	Backup
00000	0000000000	0000000	0000	000●00
Can we obs	erve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	serve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes
- different oscillation modes: g-modes, s-modes,...

Hybrid star phenomenology from the properties of the special point

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	erve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes
- different oscillation modes: g-modes, s-modes,...
- Since f-modes are radial \Rightarrow no emission of gravitational waves (GW)

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	serve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes
- different oscillation modes: g-modes, s-modes,...
- Since f-modes are radial \Rightarrow no emission of gravitational waves (GW)
- could couple to nonradial oscillations \Rightarrow emit GW

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	serve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes
- different oscillation modes: g-modes, s-modes,...
- Since f-modes are radial \Rightarrow no emission of gravitational waves (GW)
- could couple to nonradial oscillations \Rightarrow emit GW
- as f-mode see entire star \Rightarrow possible insights on composition, etc.

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	serve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes
- different oscillation modes: g-modes, s-modes,...
- Since f-modes are radial \Rightarrow no emission of gravitational waves (GW)
- could couple to nonradial oscillations \Rightarrow emit GW
- as f-mode see entire star \Rightarrow possible insights on composition, etc.

 \Rightarrow observation seems possible

Compact Stars	Building up an NS	Properties of M-R curves \Rightarrow The Special Point 0000000	Conclusion	Backup
00000	0000000000		0000	000●00
Can we obs	serve them?			

- radial mode $(n = 0) \Rightarrow$ f-mode
- higher modes: (n > 0): p-modes
- different oscillation modes: g-modes, s-modes,...
- Since f-modes are radial \Rightarrow no emission of gravitational waves (GW)
- could couple to nonradial oscillations \Rightarrow emit GW
- as f-mode see entire star \Rightarrow possible insights on composition, etc.
 - \Rightarrow observation seems possible
 - \Rightarrow lowest frequency modes \Rightarrow easy to excite

33 / 35

npa 000	ct Stars	Building 000000	up an NS	Properti 00000	es of M-R cur ⊃O	ves \Rightarrow The Spe	cial Point	Conclusion B 0000 O	ackup 000●
	SP	M _{SP}	R_{SP}	η_V	η_D	Monset	[M _{max}]	f _{new}	
		$[M_{\odot}]$	[km]			$[M_{\odot}]$	[M _☉]	[kHz]	_
					0.749	0.251	2.044	2.120	
	e l				0.740	0.506	2.011	1.866	
	plu	1.973	11.06	0.23	0.731	0.826	1.986	1.445	
					0.721	1.169	1.974	1.096	
					0.711	1.483	1.976	imaginary	_
					0.760	0.251	2.159	2.008	_
	nta				0.753	0.506	2.130	1.827	-
	age	2.092	11.46	0.29	0.745	0.826	2.104	1.366	
	Ë				0.737	1.169	2.094	1.083	
					0.730	1.483	2.095	imaginary	_
					0.770	0.251	2.267	1.865	
	a B B				0.764	0.506	2.241	1.652	_
	ran	2.207	11.85	0.35	0.757	0.826	2.218	1.274	
	0				0.752	1.169	2.210	0.978	_
					0.747	1.483	2.209	imaginary	<u>_</u> 92

*Univ. Lisbon, Univ. Wroclaw, Univ. Coimbra

Compact Stars

Building up an NS

Properties of M-R curves \Rightarrow The Special Point 0000000

Conclusion

Backup 000000

- smaller frequencies ⇒ closer to maximum mass
- smaller f \Leftrightarrow smaller $\eta_D \Leftrightarrow$ later deconfinement
- f-mode can tell us how close we are to the maximum mass of certain curve ⇔ empirical relation ⇔ position of deconfinement phase transition

Christoph Gärtlein*, Oleksii Ivanytskyi, Violetta Sagun, David Blaschke Hybrid star phenomenology from the properties of the special point