TEC

Total weight : 14,000 to Overall diameter : 15.0 m Overall length : 28.7 m Magnetic field : 3.8 T STEEL RETURN YOKE

12,500 tonnes

SILICON TRACKERS Pixel (100x150 μm) ~16m* ~66M channels Microstrips (80x180 μm) ~200m² ~9.6M channels

> SUPERCONDUCTING SOLENOII Niobium titanium coil carrying ~18,000A

> > MUON CHAMBERS 7 Barrel: 250 Drift Tube, 480 Resistive Plate Chambers 7 Endcaps: 468 Cathode Strip, 432 Resistive Plate Comb

Polarization Effects in Processes of Dimuon Production

FORWARD CALORIMETE Steel + Quartz fibres ~2,000 Char

RYSTAL LECTROMAGNETIC ALORIMETER (ECAL) 76,000 scintillating PbWO4 crystals

V. Shalaev and S. Shmatov

Budapest. 07.12.2023

IADRON CALORIMETER (HCAL) rass + Plastic scintillator ~7,000 channels

Zimany School 2023

The Drell-Yan Process and Angular Coefficients

Why study dimuons at LHC?

- Important Standard model benchmark channel
- Search for new physic
- Can be used to explore proton inner structure
- Important background source for many BSM processes

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}\cos\theta^*\mathrm{d}\phi^*} \propto \left[(1+\cos^2\theta^*) + A_0 \frac{1}{2} (1-3\cos^2\theta^*) + A_1\sin(2\theta^*)\cos\phi^* + A_2 \frac{1}{2}\sin^2\theta^*\cos(2\phi^*) \right]$ $+A_3\sin\theta^*\cos\phi^* + A_4\cos\theta^* + A_5\sin^2\theta^*\sin(2\phi^*) + A_6\sin(2\theta^*)\sin\phi^* + A_7\sin\theta^*\sin\phi^*\Big].$

where θ^* and φ^* are the polar and azimuthal angles of l^- (e^- or μ^-) in the rest frame of γ^*/Z (Collins-Soper) and coefficients $A_0 - A_7$ are functions of p_T , Y, M kinematic 2 variables, polarised and unpolorized cross sections

The Drell-Yan Process and Angular Coefficients

Why study dimuons at LHC?

- Important Standard model benchmark channel
- Search for new physic
- Can be used to explore proton inner structure
- Important background source for many BSM processes

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}\cos\theta^*\mathrm{d}\phi^*} \propto \left[(1+\cos^2\theta^*) + A_0 \frac{1}{2} (1-3\cos^2\theta^*) + A_1\sin(2\theta^*)\cos\phi^* + A_2 \frac{1}{2}\sin^2\theta^*\cos(2\phi^*) \right]$ $+A_3\sin\theta^*\cos\phi^* + A_4\cos\theta^* + A_5\sin^2\theta^*\sin(2\phi^*) + A_6\sin(2\theta^*)\sin\phi^* + A_7\sin\theta^*\sin\phi^*\Big].$

where θ^* and φ^* are the polar and azimuthal angles of l^- (e^- or μ^-) in the rest frame of γ^*/Z (Collins-Soper) and coefficients $A_0 - A_7$ are functions of p_T , Y, M kinematic 3 variables, polarised and unpolorized cross sections

 $\overline{u} \overline{s}$

u

g d

g

g g

d

u

g d

g

ug

g

d

d

ū

- Non zero partons transverse momentum
- Correlations between spin and parton transverse momentum

All A_i depends on PDF's!

μ_

- Non zero partons transverse momentum
- Correlations between spin and parton transverse momentum

All A_i depends on PDF's!

• Higher orders QCD effects produce complicated P^T distribution of partons

- Non zero partons transverse momentum
- Correlations between spin and parton transverse momentum

All A_i depends on PDF's!

 Higher orders QCD effects produce complicated P^T distribution of partons

 \mathbf{p}^T

- Non zero partons transverse momentum
- Correlations between spin and parton transverse momentum

Measurements of Drell-Yan Angular Coefficients at the LHC

Angular coefficients A_{0-7} (A_{0-4}) are obtained in bins of dilepton (dimuon) transverse momentum and rapidity $80 < M_{\mu^+\mu^-} < 100$ GeV by ATLAS (CMS) collaboration at 8 TeV

- Lam-Tung relation $A_0 = A_2$ (related with rotation invariance) violation was observed
- Forward-Backward Asymmetry A_{FB} was also measured at 7, 8, and 13 TeV
- Experimental data of CMS and ATLAS experiments are in agreement with each other and with SM NNLO predictions, but some deviations are exist at high p_T^Z

 A_{0-7} measurements at 13 TeV are in progress (CMS)

13

The NICA basic facility

Polarization Study with the SPD NICA (Nuclotron based Ion

Colider fAcility)

- $\sqrt{s_{pp}} = 27 \ GeV$ is not really well known region
- QCD sub-processes not well-described at this energy range
- Polorized beams give a possibility to study Transverse Momentum Dependent PDFs

- $\sqrt{s_{pp}} = 27 \ GeV$ is not really well known region
- QCD sub-processes not well-described at this energy range
- Polorized beams give a possibility to study Transverse Momentum Dependent PDFs

Study of Drell – Yan process at NICA energies is inefficient: $S/B \approx 4.6 \times 10^{-4}$ (before cuts) The SPD Collaboration made a decision to <u>suspend</u> the study of such reactions (A. Skachkova Report 31.08.23 Minsk)

- $\sqrt{s_{pp}} = 27 \ GeV$ is not really well known region
- QCD sub-processes not well-described at this energy range
- Polorized beams give a possibility to study **Transverse Momentum Dependent PDFs**

Study of Drell – Yan process at NICA energies is inefficient: $S/B \approx 4.6 \times 10^{-4}$ (before cuts) The SPD Collaboration made a decision to suspend the study of such reactions

(A. Skachkova Report 31.08. Minsk)

- $\sqrt{s_{pp}} = 27 \ GeV$ is not really well known region
- QCD sub-processes not well-described at this energy range
- Polorized beams give a possibility to study Transverse Momentum Dependent PDFs

Study of Drell – Yan process at NICA energies is inefficient: $S/B \approx 4.6 \times 10^{-4}$ (before cuts) The SPD Collaboration made a decision to <u>suspend</u> the study of such reactions (A. Skachkova Report 31.08. Minsk)

- Dominated by gluon-gluon fusion
- ✓ High cross-section
- ✓ J/ψ can be easily reconstructed from the $\mu^+\mu^-$ - decay
- ✓ Factorization of cc̄ pair is not well understood theoretically

arXiv:hep-ph/0111379 J/ψ 10 eeeeeeeeeeee J/₩ 200 nb 10 ψ(2S) $\sigma_{\sqrt{s_{pp}}=27~GeV}(J/\psi)$ = 200 nb 10 Br: $J/\psi \rightarrow \mu^{+}\mu^{-} = 0.05961$ $\sigma (I/\psi \rightarrow \mu^+\mu^-) = 12 \text{ nb}$ 10 10 20 30 40 50 Main background: $\pi^+\pi^- \rightarrow \mu^+\mu^-$ √s(GeV)₁₈ 27 GeV

- $\sqrt{s_{pp}} = 27 \ GeV$ is not really well known region
- QCD sub-processes not well-described at this energy range
- Polorized beams give a possibility to study **Transverse Momentum Dependent PDFs**

Study of Drell – Yan process at NICA energies is inefficient: $S/B \approx 4.6 \times 10^{-4}$ (before cuts) The SPD Collaboration made a decision to suspend the study of such reactions

Conclusions

Results:

- ✓ Full set o angular polarization coefficients A_{0-7} was measured in Z-peak by ATLAS and CMS (A_{0-4}) in pp-collisions at 8 TeV
- ✓ A_{0-7} measurements at 13 TeV with the CMS is almost done. Estimation of higher order effects is under the process

All measurements (8, 13 TeV) are in a good agreement with a Standard model predictions!

✓ Studying of J/ψ production under SPD conditions is started with MC modeling. Possibility to perform this kind of research at NICA is approved

Prospects:

- **D** Publish 13 TeV A_i measurements results
- \Box Studying of J/ψ production with simulation of SPD detector response

Thanks for your attention!

CMS Draft Analysis Note

The content of this note is intended for CMS internal use and distribution only

2021/10/02 Archive Hash: 9583ef3-D Archive Date: 2021/08/27

The Drell-Yan Angular Coefficients Measurement at 13 TeV

the CMS Collaboration CERN

Abstract

The polarization of the Z-boson is presented triple differentially, in bins of Z-boson rapidity, transverse momentum and dilepton invariant mass. A data set of Z-bosons decaying to muons at a pp collision energy of 13 TeV and with an integrated luminosity of 138.7 fb⁻¹ is used. The polarization of the Z-boson does affect the acceptance for precision measurements and is important for the modeling of the kinematics of leptons, as the polarization governs the Z-boson decay. The seven polarization coefficients that are measured in the Collins-Soper frame. Fair agreement is observed between the data and simulation.

A_i Measurement at 8 TeV for |Y| < 1

Comparison of the five angular coefficients A_i and $A_0 - A_2$ measured in the Collins– Soper frame in bins of p_T for |Y| < 1

- A_i increasing with p_T enlargement (except A_4)
- $A_0 \approx A_2$ as it is predicted
- Lum—Tung violation are presented
- Well described by theory
- But...

A_i Measurement at 8 TeV for 1 < |Y| < 2.1

Comparison of the five angular coefficients A_i and $A_0 - A_2$ measured in the Collins– Soper frame in bins of p_T for 1 < |Y| < 2.1

• ... some deviations between data and MC at high p_T!

 A_i well described by Standard Model but we should get more precise information about NLO (NNLO) effects at high p_T !

Angular Coefficients Values

 A₀ = A₂ at LO QCD (Lum-Tung relation) but it is violated at higher orders

Lum-Tung relation can be violated for non-zero p_T of Z-bosons due to:

- higher orders and twists
- QCD vacuum structure

 $A_0 - A_2$ related to the Z-boson polarisation $A_3 - A_6$ sensetive V-A structure of the couplings in parity violation terms

- A_i is dependent on PDF
- A₄ related to the forward-backward asymmetry.
- A₅ A₇ are expected to become nonzero only NNLO, but are small for NLO processes, usually taken to be zero.

Datasets for Data

Experimental data at $\sqrt{s} = 13$ TeV. Results for 2016 data (~ 37.2 fb^{-1}) are presented. Work with the full Run-2 statistic is ongoing

Year	Dataset
2016	/SingleMuon/Run2016B-05Feb2018_ver2-v1/MINIAOD /SingleMuon/Run2016C-05Feb2018-v1/NANOAOD /SingleMuon/Run2016D-05Feb2018-v1/NANOAOD /SingleMuon/Run2016F-05Feb2018-v1/NANOAOD /SingleMuon/Run2016F-05Feb2018-v1/NANOAOD /SingleMuon/Run2016G-05Feb2018_ver2-v1/NANOAOD /SingleMuon/Run2016H-05Feb2018_ver2-v1/NANOAOD /SingleMuon/Run2016H-05Feb2018_ver3-v1/NANOAOD
2017	/SingleMuon/Run2017B-31Mar2018-v1/NANOAOD /SingleMuon/Run2017C-31Mar2018-v1/NANOAOD /SingleMuon/Run2017D-31Mar2018-v1/NANOAOD /SingleMuon/Run2017E-31Mar2018-v1/NANOAOD /SingleMuon/Run2017F-31Mar2018-v1/NANOAOD /SingleMuon/Run2017H-31Mar2018-v1/NANOAOD
2018	/SingleMuon/Run2018A-14Sep2018_ver3-v1/NANOAOD /SingleMuon/Run2018B-14Sep2018_ver2-v1/NANOAOD /SingleMuon/Run2018C-14Sep2018_ver1-v1/NANOAOD /SingleMuon/Run2018D-14Sep2018_ver2-v1/NANOAOD

Year	Dataset
2016	/DYJetsToLL_M-50to Inf_TuneCUETP8M1_13TeV-amcatnloFXFX- pythia8/RunIISummer16NanoAOD- PUMoriond17_05Feb2018_94X_mcRun2_asy mptotic_v2_ext2-v1/NANOAODSIM

Events Selection conditions:

- $p_T^{\mu} > 20 \; GeV$, $|\eta| < 2.4$
- Tight Muon Selection
- Isolation: Rellso < 0.15, R=0.4
- HLT_IsoTkMu24 || HLT_IsoMu24 <u>Binning</u>
- Z region
 - $p_T = 0, 10, 20, 35, 55, 80, \\ 120, 200, 400, inf.$
 - \succ |*Y* | = 0, 1, 2.4
 - > M = 81 101

• 50toInf

- *p_T* = 0, 10, 20, 40, 600.
 |*Y* | =0, 0.35, 0.9, 1.35, 2.4
- $> M = 50, 81, 101, inf^{25}$

Angular Coefficients

The Collins-Soper coordinate system is chosen in such a way that the Z-axis bisects the angle between the interacting quarks

$$\cos \theta^{*} = \frac{p_z^{(\ell^+\ell^-)}}{|p_z^{(\ell^+\ell^-)}|} \frac{2}{m(Z/\gamma^*)\sqrt{m(Z/\gamma^*)^2 + p_T(Z/\gamma^*)^2}} (P_1^+P_2^- - P_1^-P_2^+)$$

$$P_i^{\pm} = \frac{1}{\sqrt{2}} (E_i \pm p_{z,i}),$$

$$\tan \varphi^* = \frac{\sqrt{M_{l^+l^-}^2 + (p_T^{l^+l^-})^2}}{M_{l^+l^-}} \cdot \frac{\overrightarrow{\Delta_r} \cdot \widehat{R_T}}{\overrightarrow{\Delta_r} \cdot \widehat{h}}$$

Where $M_{l^+l^-}$ is the dilepton invariant mass, $\overrightarrow{\Delta_r} = l^- - l^+$, where l^- and l^+ are the respective fourmomenta of the particle (electron, muon) and antiparticle (positron, antimuon), \hat{h} is a transverse unit vector in the direction of $p_T^{l^+l^-}$ and $\widehat{R_T}$ is a transverse unit vector in the direction $\overrightarrow{P_A} \times \overrightarrow{Q}$, $\overrightarrow{P_A}$ is a vector pointing along the negative z-axis, $\overrightarrow{P_A} =$ (0, 0, -1), and \overrightarrow{Q} is the four-momentum of the dilepton pair.

Lum-Tung relation ($A_0 = A_2$) is satisfied when $\varphi_1 = 0$!

Template Method

CMS measured only first five coefficients (while ATLAS measured all 8 coefficients):

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\theta^*\mathrm{d}\phi^*} = \sum_{i=0}^5 \sigma^i = P_5(1+\cos^2\theta^*) + P_0\frac{1}{2}(1-3\cos^2\theta^*) + P_1\sin(2\theta^*)\cos\phi^* + P_2\frac{1}{2}\sin^2\theta^*\cos(2\phi^*) + P_3\sin\theta^*\cos\phi^* + P_4\cos\theta^* + P_1\frac{1}{2}\sin^2\theta^*\cos(2\phi^*) + P_3\sin\theta^*\cos\phi^* + P_4\cos\theta^*$$

$$P_i \text{ coefficients relates with } A_i \text{ as: } A_i = \frac{P_i}{P_5}$$

- Fill $cos\theta^*$, φ^* histogram at gen and reco level
- Reweight Reco events by $\frac{1+\cos^2\theta^*}{N_{gen}(\cos\theta^*,\varphi^*)}$, $\frac{1-3\cos^2\theta^*}{2N_{gen}(\cos\theta^*,\varphi^*)}$,... to get templates H_i for all of the coefficients. Here we divide by $N_{gen}(\cos\theta^*,\varphi^*)$ to get rid of polarization

• Angular coefficients can be directly obtained by minimizing the objective function:

$$\chi^{2} = \frac{\left(data^{j,k} - \left(\sum_{i=0}^{5} P_{i}H_{i}^{j,k} + H_{Bkg}^{j,k}\right)\right)^{2}}{data^{j,k}}$$

Templates at 13 TeV (Generator Level)

(MADGRAPH+PYTHIA8, CUETP8M1,NLO)

Templates for the six fit parameters P_0 - P_5 on generator level obtained for the first bin of **–** p_T (10-20 GeV) bin for the rapidity bin |Y| < 1

Templates for the six fit parameters P_0 - P_5 on generator level obtained for the first bin of p_T (200-400 GeV) bin for the rapidity bin 1 < |Y| < 2.4.

Шаблоны получены в восьми бинах р_ти двух бинах быстроты!

Templates at 13 TeV (Generator Level)

(MADGRAPH+PYTHIA8, CUETP8M1)

Templates for the six fit parameters P_0 - P_5 on generator level obtained for the first bin of p_T (0-10 GeV) bin for the rapidity bin 1 < |Y| < 2.4.

cose_{cs}

cosθ_{CS}

template for P

template for P

