Localization of Dirac modes in the SU(2)-Higgs model at finite temperature

György Baranka

Eötvös Loránd University
Budapest

December 07, 2023

Work done in collaboration with Matteo Giordano
Motivation

- connection between deconfinement and chiral symmetry restoration in QCD is still not fully understood
- low Dirac modes could be key in understanding this connection
- chiral symmetry breaking is controlled by the density of low modes (Banks-Casher relation)
- deconfinement is signalled by the ordering of Polyakov loops
- islands of fluctuations in the sea of ordered Polyakov loops are favorable for Dirac modes \Rightarrow Dirac modes localize
 \[\text{[Bruckmann et al. (2021)]} \]
- this mechanism is general: test it in other gauge theories with a deconfinement transition \Rightarrow SU(2)-Higgs model
 \[\text{[G. Baranka and M. Giordano (2023)]} \]
Localization in the SU(2)-Higgs model

- localized/delocalized modes occupy finite amount/fraction of volume
- mode size \(\sim L^\alpha \) (\(\alpha \): fractal dimension)
- modes are localized up to the mobility edge \(\lambda_c \)

\[\beta = 2.1, \kappa = 1.0 \text{ (Higgs phase)} \]

\(N_s = 20, 24 \)
\(N_s = 24, 28 \)
\(N_s = 28, 32 \)
Localization absent in confined phase, \(\lambda_c \to 0 \) at the crossover

\[\kappa = 0.3 \]

\[\beta \]

\[\lambda_c \]

\[P \text{ average} \]