Current status and future prospects of measuring hadronic interactions in pp collisions at 13.6 TeV with ALICE

Georgios Mantzaridis
on behalf of the ALICE Collaboration
Technical University of Munich (TUM)
georgios.mantzaridis@tum.de

23rd Zimányi school
Winter Workshop on Heavy Ion Physics
December 4-8, 2023
Budapest, Hungary
Accessing hadronic interactions with femtoscopy

\[C(k^*) = N \frac{N_{SE}(k^*)}{N_{ME}(k^*)} = \int S(r^*) |\Psi(k^*, r^*)|^2 \, d^3 r^* \]

Workflow for fixing the source:
- Measure correlation function \(C(k^*) \)
- Fix interaction \(\Psi(k^*) \)
- Study source \(S(r^*) \)

georgios.mantzaridis@tum.de

Zimányi School 2023
Accessing hadronic interactions with femtoscopy

\[C(k^*) = N \frac{N_{SE}(k^*)}{N_{ME}(k^*)} = \int S(r^*) |\Psi(k^*, r^*)|^2 \, d^3r^* \]

Workflow for accessing interaction:
- Measure correlation function \(C(k^*) \)
- Fix source \(S(r^*) \)
- Study interaction \(\Psi(k^*) \)

⇒ Accessing exotic interactions, e.g.:
- \(p-\Omega \) and \(\Lambda-\Xi \) (multi-strange)
- \(p-D^+ \) (charmed)
How to constrain the source size:

• Measure correlation function $C(k^*)$
• Fix interactions $\Psi(k^*) \rightarrow p-p$ & $p-\Lambda$
• Take short-lived resonances into account
• Extract source as a function of m_T
Common baryonic source in pp collisions

How to constrain the source size:

• Measure correlation function $C(k^*)$
• Fix interactions $\Psi(k^*) \to p-p$ & $p-\Lambda$
• Take short-lived resonances into account
• Extract source as a function of m_T

![Diagram showing sources and interactions](image)
Current status: Starting femtoscopy in Run 3

- First multiplicity and m_T differential measurement of p–p correlations
- First baseline measurement for constraining the source for all future femtoscopy studies in Run 3 with ALICE
 -> statistically limited channels and three body correlations accessible with Run 3 data
- Next steps: Extend source measurement to p–Λ and core source

Observation:
Source radius increases with increasing multiplicity and decreases for increasing m_T

600 billion MB events collected in 2022 alone