Multi-dimensional investigation of the pion pair-source in heavy-ion collisions with EPOS

Emese Árpási
(in collaboration with Márton Nagy, Dániel Kincses)
Eötvös Loránd University, Budapest

23rd ZIMÁNYI SCHOOL WINTER WORKSHOP
ON HEAVY ION PHYSICS
December 4-8, 2023
Budapest, Hungary
Theoretical framework and methods

- EPOS: event generator of heavy-ion collisions
- Event-by-event and 3 dimensional investigation to see if the Lévy shape is the result of event-averaging or direction averaging
- Pion pair source function fitted with Lévy distribution
 \[D(r) = \mathcal{L} \left(r, 2^{\frac{1}{\alpha}} R_{\text{out}}, 2^{\frac{1}{\alpha}} R_{\text{side}}, 2^{\frac{1}{\alpha}} R_{\text{long}}, \alpha \right) \]
- Event-by-event distributions of pion pairs
- Separated the measurements into centrality and \(k_T \) classes
- 3 dimensional pair-distribution \(\Rightarrow \) 1 dimensional projections according Bertsch-Pratt-coordinates \(\Rightarrow \) fitting 1 dimensional Lévy-functions to the projections
 \[\mathcal{L}(r, R_{\text{out,side,long}}, \alpha) = \frac{1}{\pi} \int_{0}^{\infty} dq \cos qr e^{-\frac{1}{2} q R_{\text{out,side,long}}} \]
- For the 3 projection of a 3 D distribution: fitting simultaneously with same Lévy exponent but different Lévy scales
Results

➢ Lévy-exponent: $\alpha \approx 1.6 - 1.7$, not Gaussian ($\alpha \neq 2$)
➢ Lévy-scale: different values for the different projections (with the same α-s)
➢ Lévy shape is not the result of event-averaging or direction averaging
➢ Results agree with 1D analysis of Ref. D. Kincses, M. Stefaniak and M. Csanád, Entropy 24 (2022) no.3, 308

Mean R values vs. kt

Mean α values vs. kt

Thank you for your attention!