Quantifying the Underlying Event in high-energy pp collisions from RHIC to LHC

G.G. Barnaföldi, A.N. Mishra, G. Paic, and G. Bíró

Support: Hungarian OTKA grant K135515, 2019-2.1.11-TÉT-2019-00078, Wigner Scientific Computing Laboratory

Refs: J.Phys.G 47 (2020) 10, 105002, J. Phys. G50 (2023) 9,095004

QGP - the matter of the early Universe

QGP - the matter of the early Universe

Which one is the "closest" to the early Universe?

A) PbPb collision

C) Abstain (now)

B) pp collision

G.G. Barnafoldi: Zimányi School 2023

QGP - the matter of the early Universe

Which one is the "closest" to the early Universe?

A) PbPb collision

C) Cup of coffee

G.G. Barnafoldi: Zimányi School 2023

B) pp collision

Outline

1) Earlier studies

- What is UE? Why is this important for in HEP?
 - → theory, experiment, measures

2) New developments on UE

- Angular properties measures
 - → multiplicity, p_T spectra, parameter derivatives
 - → Tsallis thermometer

3) Comparison to event shape variable

- Spherocity measures and cross check
- 4) Collision energy dependence
- → Can we quantify the UE definition?

UE

So what Uderlying Event is?

Theoretical point:

- Mainly non-perturbative QCD effect
 - → Initial & final state radiation
 - → Multiple parton interaction
 - → Color Reconnection (CR)
 - \rightarrow intrinsic k_T
 - → Hadronization

So what Uderlying Event is?

Theoretical point:

- Mainly non-perturbative QCD effect
 - → Initial & final state radiation
 - → Multiple parton interaction
 - → Color Reconnection (CR)
 - \rightarrow intrinsic k_T
 - → Hadronization

Experimental point

- Pedestal-like effects
 - → Activity in the event over MB
 - → Beam remnants (pile up)
 - → Trigger bias (jet criterion)

Earlier studies, motivation

Geometrical structure of an event

G.G. Barnafoldi: Zimányi School 2023

Geometrical structure of an event

How to separate jet & UE?

Jet finding & elimination:

- Surrounding Band (SB method),
 Find a jet, THEN define SBs
- IF SB₁ and SB₂ are equal, THEN eliminate the jet
 - → expensive (high statistics)
 - → sensitive to cuts

Correlation & background

- Traditional method by CDF
 - → burte force
 - → geometry info only

leading/near jet toward SB lead,2 transverse Ф SB away UE, away SB η

CDF UE

SB-based UE

See: BGG et al: J.Phys.Conf.Ser. 270 (2011) 012017,AIP Conf.Proc. 1348 (2011) 124,

EPJ Web Conf. 13 (2011) 04006

G.G. Barnafoldi: Zimányi School 2023

New development to understand UE

The simulated data

PYTHIA_v8240 Monash 2013 tune

- 1 billion non-diffractive collisions of pp
- C.m. energy: √s = 13 TeV
- Includes 2→ 2 hard scattering process, followed by initial and final state parton showering, multiparton interactions, and the final hadronization process.
- The events having at least three primary charged particle with transverse
- Min. momentum: $p_T > 0.15$ GeV/c
- Pseudorapidity: $|\eta| < 0.8$
- UE: Color Reconnection (CR, Multiple
 Parton Interaction (MPI)
 G.G. Barnafoldi: Zimányi School 2023

Angular structure of an event

Standard CDF definition

Angular structure of an event

Standard CDF definition

Sliding angle, cake slices

Sliding angle, cake slices

- We make slices of the Δφ of size 20°. In this case, the results for the first bin 0 to 20°. are reported in two ways: including and excluding the leading particle in the result. Case II is a tool for exploring the geometrical structure of the Underlying Event.

Multiplicity/MB

PYTHIA multiplicity with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- More multiplicity az NS
- TS & AS are mainly flat
- With leading particle deviation is increased

TS

AS

TS

Multiplicity/MB

PYTHIA multiplicity with sliding angle

PYTHIAs model UE: CR & MPI

Good fits with the parametrizations

More multiplicity az NS

TS & AS are mainly flat

 With leading particle deviation is increased

The p_T spectrum

PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- Low p_T is constant (T)
- High p_T varies (q)
- NS/AS are similar
- Need to consider w/o leading particle

The p_T spectrum

PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations
- Low p_T is constant (T)
- High p_T varies (q)
- NS/AS are similar
- Need to consider w/o leading particle

How to quantify & compare these?

Precise spectra description

from low- to high-p_T

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s} (m_T - m) \right]^{-\frac{1}{q-1}}$$

- in multiplicity classes (pp, pA, AA)

$$\frac{dN_{ch}}{dy}\Big|_{y=0} = 2\pi A T_s \left[\frac{(2-q)m^2 + 2mT_s + 2T_s^2}{(2-q)(3-2q)} \right] \times \left[1 + \frac{q-1}{T_s} m \right]^{-\frac{1}{q-1}}$$

With PID:

$$\pi^\pm, K^\pm, K^0_s, K^{*0}, p(\bar{p}), \Phi, \Lambda, \Xi^\pm, \Sigma^\pm, \Xi^0, \Omega$$

- Wide range:

	pp	рА	AA
CM energy (GeV)	7000, 13000	5020	130-5020
Multiplicity range	2.2-25.7	4.3-45	13.4-2047

How to quantify & compare these?

QCD-inherited scaling properties

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s} (m_T - m) \right]^{-\frac{1}{q-1}}$$

Parameter scaling with √s & multiplicity

$$A(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = A_0 + A_1 \ln \frac{\sqrt{s_{NN}}}{m} + A_2 \langle N_{ch}/\eta \rangle$$
$$T(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = T_0 + T_1 \ln \frac{\sqrt{s_{NN}}}{m} + T_2 \ln \ln \langle N_{ch}/\eta \rangle,$$
$$q(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = q_0 + q_1 \ln \frac{\sqrt{s_{NN}}}{m} + q_2 \ln \ln \langle N_{ch}/\eta \rangle,$$

Details:

G. Biró et al: J.Phys.G 47 (2020) 10, 105002

A. Ortiz: Phys.Rev.D 104 (2021) 076019

How to quantify & compare these?

QCD-inherited scaling properties

$$f(m_T) = A \cdot \left[1 + \frac{q-1}{T_s}(m_T - m)\right]^{-\frac{1}{q-1}}$$

Parameter scaling with √s & multiplicity

$$A(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = A_0 + A_1 \ln \frac{\sqrt{s_{NN}}}{m} + A_2 \langle N_{ch}/\eta \rangle$$
$$T(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = T_0 + T_1 \ln \frac{\sqrt{s_{NN}}}{m} + T_2 \ln \ln \langle N_{ch}/\eta \rangle$$
$$q(\sqrt{s_{NN}}, \langle N_{ch}/\eta \rangle, m) = q_0 + q_1 \ln \frac{\sqrt{s_{NN}}}{m} + q_2 \ln \ln \langle N_{ch}/\eta \rangle,$$

Thermodynamical consistency

P = g
$$\int \frac{d^3p}{(2\pi)^3} Tf$$
, N = nV = gV $\int \frac{d^3p}{(2\pi)^3} f^q$,
s = g $\int \frac{d^3p}{(2\pi)^3} \left[\frac{E-\mu}{T} f^q + f \right]$, $\varepsilon = g \int \frac{d^3p}{(2\pi)^3} Ef$

Tsallis fit parameters

PYTHIA spectra with sliding angle

- PYTHIAs model UE: CR & MPI
- Good fits with the parametrizations (red line)
- NS → highest T
- NS/AS → highest q
- TS → constant q, T
- Multiplicity ~ A

On the Tsallis-thermometer

On the Tsallis-thermometer

On the Tsallis-thermometer

Cross-check with event shape variable

How to quantify & compare events?

Transverse spherocity:

$$S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\overrightarrow{p_{T_i}} \times \hat{\mathbf{n}}|}{\sum_i p_{T_i}} \right)^2$$

Thrust:

$$T_{\min} \equiv \frac{\sum_{i} |\vec{p}_{\mathrm{T},i} \cdot \hat{n}_{m}|}{\sum_{i} p_{\mathrm{T},i}}$$

- → NO need for jet finding
- → Momentum & geometry infos

G. Bencédi et al: Phys.Rev.D 104 (2021) 076019

G.G. Barnafoldi: Zimányi School 2023

 $\tau_{\rm T} = 0.182$

F = 0.331

 $T_{\rm min} = 0.374$

Event shape variable: spherocity

Simple 2-component model

Isotrope: flat low p_T distribution

Jet: flat high p_T distribution

Event shape variable: spherocity

Simple 2-component model

Isotrope: flat low p_T distribution

Event shape variable: spherocity

Simple 2-component model

Isotrope: flat low p_⊤ distribution $S_0 = \frac{\pi^2}{4} \left(\frac{\sum_i |\vec{p}_{T_i} \times \hat{n}|}{\sum_i p_{T_i}} \right)^2$ Jet: flat high p_T distribution Jetty ($S_0 \rightarrow 0$) 50000 40000 30000 with p_ as a weight φ (rad.) ♦ (rad.)

→ Event selection based on spherocity classes is available in ALICE

Spherosity definition

Event shape variable: spherocity

Simple 2-component model

Spherosity definition

→ Event selection based on spherocity classes is available in ALICE

Spherocity relative to the MB defines wider UE

→ CDF-based UE [40,140]

Spherocity relative to the MB defines wider UE

→ CDF-based UE [40,140]

Spherocity relative to the MB defines wider UE

→ Wider range of UE [40,140], than in CDF [60,120]

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

→ Wider range of UE [40,140], than in CDF [60,120]

- Spherocity relative to the MB defines wider UE
- Tsallis-thermometer presents the same

Parameters in spherocity classes

- PYTHIA spectra with sliding angle in S₀ classes
 - The more jetty the event, the angular variation is stronger.

Isotropic ($S_0 \rightarrow 1$)

Minimal activity (lowest q & T values are in the isotropic case. $\frac{1}{n} \int_{0}^{n} dt dt$

→ Isotropic events are closer to UE, activity is more than MB

Dependence on c.m. energy

Multiplicity scaling from RHIC to LHC

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy

Multiplicity scaling from RHIC to LHC

PYTHIA spectra with sliding $N_{ch_{\Delta\phi}}/\Delta\phi$ $N_{ch_{MB}}/2\pi$ NS TS AS TS NS angle from RHIC to LHC — 200 GeV Multiplicity goes with the - 900 GeV — 7 TeV logarithm of the c.m. energy --- 13 TeV $\langle dN_{ch}/d\eta \rangle$ with leading particle AA, central ALICE ALICE 1.5 atlas **PHOBOS PHENIX** $\sim s^{0.155(4)}$ BRAHMS pA(dA), NSD STAR ALICE \times NA50 **PHOBOS** 2 6 $|\eta| < 0.5$ $\Delta \phi$ (rad.) 10^{3} 10² 10⁴ 10 $\sqrt{s_{NN}}$ (GeV)

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

Nice c.m. energy scaling trends

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

Nice c.m. energy scaling trends

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

Nice c.m. energy scaling trends

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

→ Nice c.m. energy scaling trends

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

→ Nice c.m. energy scaling trends

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

→ Nice c.m. energy scaling trends even further?

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable

→ Nice c.m. energy scaling trends even further?

Conclusions

Could we understand UE?

- Not yet, but getting closer by quantifying them
 - → Model UE: PYTHIA (CR, MPI), HIJING (minijet)
 - → UE properties has been charaterized
 - → Tsallis-Pareto fits well in narrow slices

To take away...

- Tsallis-thermometer present wider UE
 In degrees CDF: [60,120] → [40,140]
- Event shape classification support the model
- Scales with c.m. energy well
- → UE has been quantified, next step...
 Measure & investigate in pA or AA?
 G.G. Barnafoldi: Zimányi School 2023

So, again....

Which one is the "closest" to the early Universe?

A) PbPb collision

C) Cup of coffee

B) pp collision

G.G. Barnafoldi: Zimányi School 2023

Thank You!

- PYTHIA spectra with sliding angle from RHIC to LHC
 - Multiplicity goes with the logarithm of the c.m. energy
 - Leading particle line is the outlier
 - The structure of the curve is stable
 - Spherocity is increasing, but the size of the effect is the same

→ Nice c.m. energy scaling trends, in spherocity as well

Derivatives of the parameters

- PYTHIA spectra parameter derivatives with sliding angle
 - PYTHIAs model UE: CR & MPI
 - TS (+AS) → constant T & q

$$\frac{\delta T_s}{\delta(\Delta\phi)} \neq 0 \quad \& \quad \frac{\delta q}{\delta(\Delta\phi)} \neq 0 \quad \text{(for NS & AS)}$$

$$\frac{\delta T_s}{\delta(\Delta\phi)} \approx 0$$
 & $\frac{\delta q}{\delta(\Delta\phi)} \approx 0$ (for TS)

- NS → highest T
- NS/AS → highest q
- Multiplicity ~ A

Spherocity model with multiplicity

Thermodynamical consistency?

Thermodynamical consistency: fulfilled up to a high degree

$$P = g \int \frac{d^3p}{(2\pi)^3} Tf,$$

$$N = nV = gV \int \frac{d^3p}{(2\pi)^3} f^q,$$

$$s = g \int \frac{d^3p}{(2\pi)^3} \left[\frac{E-\mu}{T} f^q + f \right],$$

$$\varepsilon = g \int \frac{d^3p}{(2\pi)^3} Ef$$

Compare EoS to data: Lattice QCD (parton) & Biró-Jakovác parton-hadron

G.G. Barnafoldi: Zimányi School 2023