Image reconstruction in proton computed tomography

Supervisors:
Gábor Bíró, Ph.D.
Gábor Papp, Ph.D.

Zsófia Jólesz
23rd Zimányi School, 2023
What is proton therapy?

• Cancer treatment: surgery, chemotherapy, radiotherapy, immunotherapy
• Radiotherapy: uses ionizing particles
• What kind of particles?
 ➔ Photons
 ➔ Protons
 ➔ Heavy ions

Layout of HIT Centre in Heidelberg [2]
Why is proton therapy so outstanding?

Interactions of protons [3]

Comparison of depth dose profiles of high-energy photon (X-rays, in blue), protons (green), and carbon ions (red) beams [2]
Problems with imaging and the solution

- Today: X-ray CT is used
- We need to know the RSP* of the protons
- Difference between the absorption of photons and the energy loss of protons → conversion is not accurate between Hounsfield units* and RSP [4]
- Solution: we do the imaging with protons! → proton CT

*X-Relative Stopping Power
*Quantitative measurement of radio density used in CT imaging, calculated of the baseline linear absorption of the X-ray beam

X-ray CT vs. proton CT [8]
The Bergen pCT Collaboration

- Based at University of Bergen
- Goal: to build a proton CT system, based on high-energy particle detectors used in CERN and other collaborations
- Detector system is based on ALPIDE chip (originally developed for the ALICE experiment in CERN)

Cross-sectional view (A) and photograph (B) of the ALPIDE chip

The Bergen pCT system
Image reconstruction techniques

2 main types

- Based on integral transformations → Radon, Inverse Radon
 - Easy, but not accurate and cannot be used with proton CT

- Iterative reconstruction techniques
 - Model the problem as a linear equation system
 \[A \cdot x = b \]
 - Vector that contains interaction coefficients between protons and pixels/voxels
 - Matrix that contains estimated proton RSP values
 - Vector that contains the known WEPL values of the protons

Zsófia Jólesz
23rd Zimányi School, 2023
Iterative methods for image reconstruction

N iterations

Initial image

Corrected image

Satisfactory image

Converged corrections

Corrections

Corrected image

Corrections
The Richardson-Lucy algorithm

- Statistical iterative algorithm
- Maximum Likelihood - Expectation Maximization (ML-EM)
- Originally used in optics [5], [6], [7]
- Input data from Monte Carlo
- MLP Calculation
- Calculating RSP distribution

\[x_{i}^{k+1} = \frac{1}{\sum_{j} A_{i,j}} \sum_{j} y_{j} A_{i,j} x_{1}^{k} \]

This is very difficult to solve technically (millions of proton trajectories)
- Using GPU
- Using Cuda
- Finding optimization regarding the number of iterations and protons

Zsófia Jólesz
23rd Zimányi School, 2023
Steps of the framework

1. Generating data with Monte Carlo
2. Adding simulated measurement errors
3. 3-sigma filtering
4. MLP calculation
5. Calculating RSP distribution with Richardson-Lucy
6. Simulations with Geant4 & Gate
7. From correlated Gauss distributions, for every proton's direction & position
8. Filtering directions and WEPL values of the protons
9. Calculating the most likely position of protons going in and coming out of the cylinder around the phantom

Parallelization

C++ code accelerated with GPU (using CUDA): Hadamard ratios are calculated for every trajectory in the GPU kernels (Wigner WSCLAB)

Shorter runtime (days → hours)
Evaluating the algorithm

Derenzo phantom

- 200 mm diameter water cylinder with 6 sectors of 1.5-6 mm diameter aluminium rods
- Used for measuring spatial resolution

CTP404 phantom

- 150 mm diameter epoxy cylinder with 8 different material inserts with 12.2 mm diameter
- Used for measuring reconstruction accuracy for RSP
Results

The original (left) and the reconstructed (right) Derenzo phantom

<table>
<thead>
<tr>
<th></th>
<th>X axis</th>
<th>Y axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Reconstructed</td>
<td>0.71</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Valley-to-peak intensity ratios

MTF\(_{10\%}\) values

\[
MTF_{10\%} = \frac{2}{\pi} \cdot \sqrt{-\ln 0.1 \cdot \ln 2} \cdot \frac{1}{\text{FWHM}}
\]

One slice of the original (left) and reconstructed (right) Derenzo phantom and the intensities projected onto the x, y axis

Zsófia Jólesz
23rd Zimányi School, 2023
The difference between the real and reconstructed RSP values of the different materials

<table>
<thead>
<tr>
<th>Material</th>
<th>RSP (original phantom)</th>
<th>RSP (reconstructed phantom)</th>
<th>Relative difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.000</td>
<td>5.324*10^{-4}</td>
<td>5.324*10^{-4}</td>
</tr>
<tr>
<td>Teflon</td>
<td>1.833</td>
<td>1.749</td>
<td>0.046</td>
</tr>
<tr>
<td>Delrin</td>
<td>1.363</td>
<td>1.289</td>
<td>0.054</td>
</tr>
<tr>
<td>PMMA</td>
<td>1.179</td>
<td>1.124</td>
<td>0.047</td>
</tr>
<tr>
<td>Air</td>
<td>0.000</td>
<td>5.324*10^{-4}</td>
<td>5.324*10^{-4}</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>1.048</td>
<td>0.987</td>
<td>0.058</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>1.003</td>
<td>0.919</td>
<td>0.084</td>
</tr>
<tr>
<td>PMP</td>
<td>0.866</td>
<td>0.813</td>
<td>0.061</td>
</tr>
</tbody>
</table>
Results

Difference between the original and the reconstructed images

10th iteration

100th iteration

200th iteration

300th iteration
Results

- **Absolute Error**: number of pixels that differ
- **Peak Absolute Error**: the largest absolute difference between any two corresponding pixels
- **Mean Absolute Error**: the average absolute difference between corresponding pixels
- **Mean Squared Error**: the average squared difference between corresponding pixels
- **Root Mean Squared Error**: square root of the above
Summary

- I have optimized a framework that utilises the Richardson-Lucy algorithm for pCT image reconstruction
 - More compact framework, more user-friendly
 - Significantly shorter runtime (days → hours)
- Tested the framework on two phantoms
 - Good spatial resolution and reconstruction accuracy
- Accuracy converges with the number of iterations
- Runtime should be even shorter for clinical usage (~minutes)

Future plans

- Development of the framework → realistic phantom (Shepp-Logan)?
- Implementing Machine Learning for MLP calculation?
- Clinically usable form
Thank you for your attention!

My research was supported by the Hungarian National Research, Development and Innovation Office (NKFIH) grants under the contract numbers OTKA K135515.

Zsófia Jólesz
23rd Zimányi School, 2023
References

