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Introduction

Schwinger mechanism is a nonperturbative effect where
electron-positron pairs are created from the vacuum in strong
electric field
We will examine a similar model with scalar fields coupled to a
time independent classical source, which is exactly solveable
Historically believed to not have scattering in this model, but we
find scattering due to the vacuum decay
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Model and eom

We model a free real scalar field coupled to a static classical source:

L =
1
2
∂µϕ ∂

µϕ− 1
2

m2ϕ2 + gρ(x) ϕ.

Solutions to e.o.m. can be computed exactly

ϕ(x) = ϕ0(x)+ig
∫ t

t0
dy0

∫
d3y ρ(y)

∫
d3p

(2π)32Ep

(
e−ip·(x−y) − eip·(x−y)

)
.

It has the form "free part + Green’s function".
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Field and Hamiltonian

h(p) = g
−1√
2E3

p

∫
d3y e−ip·yρ(y),

f (t ,p) = g
eiEpt − 1√

2E3
p

∫
d3y e−ip·yρ(y),

The field can be written in the compact way

ϕ(x) =
∫

d3p
(2π)3

√
2Ep

[(
ap + f (t ,p)

)
e−ip·x +

(
a†

p + f ∗(t ,p)
)

eip·x
]
.

We can see the time dependent ladder operators ap(t) = ap + f (t ,p)

H =

∫
d3p
(2π)3 Ep

[(
a†

p(0) + h∗(p)
)(

ap(0) + h(p)
)
− |h(p)|2

]
.

Different ladder operators in the Hamiltonian and field. No mutual
eigenstate of particle number and Hamiltonian exists (for all times).
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Vacuum decay probability

Initial vacuum |0⟩ gains a nonzero particle number expectation value
after time t

N0(t) =
∫

d3p
(2π)3 ⟨0|a

†
p(t)ap(t)|0⟩ = 2

∫
d3p
(2π)3

(
1 − cos(Ept)

)
|h(p)|2 .

Eigenstates of the Hamiltonian form a basis so we can insert them with
the identity in the expression

P0→n(t) =
∫

d3p1 · · · d3pn

(2π)3n2Ep1 · · · 2Epn

|⟨p1, · · · ,pn|U(t ,0) |0⟩|2

Result is a Poisson distribution with time dependent particle number
expectation value

P0→n(t) =
e−N0(t)

n!

[
N0(t)

]n
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Small and large time behaviour

Small time behaviour slower than exponential decay.

P0→0(t) = exp
{
−2

∫
d3q
(2π)3

(
1 − cos(Eqt)

)
|h(q)|2

}
∼ e−λt2

With N repeated measurements, survival prob. after T = Nt

P0→0(T ) = (P0→0(t))N ≈ exp
[
−Nλt2

]
= exp

[
− λ

N
T 2

]
N→∞−−−−→ 1

Zeno effect: initial state is preserved by repeated measurement for as
long as we want

For large time, the oscillation term dies out (Riemann-Lebesgue):

lim
t→∞

N0(t) = 2
∫

d3p
(2π)3 |h(p)|2 <∞.
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Numerical examples

ρ1(x) = exp

(
−πx2

L2

)
,

ρ2(x) = θ

(
L
2
− x

)
θ

(
L
2
+ x

)
...

Gaussian source

Flat source
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Small time behaviour II
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Vacuum survival probability and some approximations for the
Gaussian shaped source
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Large volume limit

The particle density distribution is well-defined for large volume

lim
L→∞

lim
t→∞

1
L3 N0(t) = 2

g2

m3 (flat source),

lim
L→∞

lim
t→∞

1
L3 N0(t) =

1√
2

g2

m3 (Gaussian source).

Different prefactor depending on shape; the tails matter (somewhat)
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One particle Scattering

With initial condition

|ψ1⟩ =
∫

d3k
(2π)32Ek

ψ1(k) |k⟩,

and the n-particle partial wave of the time evolving vacuum

ψ0(t ;p1, · · · ,pn) = ⟨p1, · · · ,pn|U(t ,0) |0⟩

Vacuum decay causes dynamics in scattering

⟨p1 · · ·pn|U(t ,0) |ψ1⟩ = −ψ0(t ;p1 · · ·pn)

∫
d3k

(2π)3
√

2Ek
f ∗(t ,k)ψ1(k)

+
1√
n

n∑
j=1

[
ψ1(pj)e−iEpj t ψ0(t ;p1, · · ·pj−1,pj+1, · · · ,pn)

]
.

First term: absorption and vacuum decay into n particles,
Second term: free propagation and vacuum decay into n − 1 particles
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Conclusion

Contrary to what was thought historically, we find scattering of
which a key component is the vacuum decay
Past arguments rely on the adiabatic switching off. This changes
the algebra of the operators, even if done at infinity, which gives
different results than the exact calculation
The vacuum decay is conceptually similar to the Schwinger
mechanism. The exact calculations show qualitative differences to
the expected result, such as a saturation of particle number,
non-exponential decay and Zeno effect
Vacuum decay might be a relevant non-perturbative production
mechanism of the dilaton, whose production is suppressed at the
tree level

Thank you for your attention!
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