Exact Schwinger mechanism for scalar fields

Arthur Vereijken

Jan Kochanowski University, Kielce

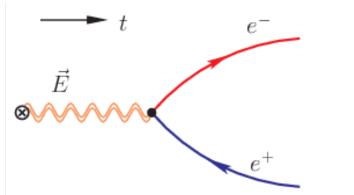
In collaboration with Leonardo Tinti, Francesco Giacosa, Shahriyar Jafarzade

December 8th 2023

23rd Zimányi School Winter Workshop on heavy ion physics

Introduction

- Schwinger mechanism is a nonperturbative effect where electron-positron pairs are created from the vacuum in strong electric field
- We will examine a similar model with scalar fields coupled to a time independent classical source, which is exactly solveable
- Historically believed to not have scattering in this model, but we find scattering due to the vacuum decay



We model a free real scalar field coupled to a static classical source:

$$\mathcal{L} = rac{1}{2} \partial_\mu \phi \; \partial^\mu \phi - rac{1}{2} m^2 \phi^2 + g
ho(\mathbf{x}) \; \phi.$$

Solutions to e.o.m. can be computed exactly

$$\phi(x) = \phi_0(x) + ig \int_{t_0}^t dy^0 \int d^3 y \ \rho(\mathbf{y}) \int \frac{d^3 p}{(2\pi)^3 2E_{\mathbf{p}}} \left(e^{-ip \cdot (x-y)} - e^{ip \cdot (x-y)} \right)$$

It has the form "free part + Green's function".

Field and Hamiltonian

$$egin{aligned} h(\mathbf{p}) &= g \, rac{-1}{\sqrt{2E_\mathbf{p}^3}} \int d^3 y \, e^{-i\mathbf{p}\cdot\mathbf{y}}
ho(\mathbf{y}), \ f(t,\mathbf{p}) &= g \, rac{e^{iE_\mathbf{p}t}-1}{\sqrt{2E_\mathbf{p}^3}} \int d^3 y \, e^{-i\mathbf{p}\cdot\mathbf{y}}
ho(\mathbf{y}), \end{aligned}$$

The field can be written in the compact way

$$\phi(\mathbf{x}) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}} \left[\left(a_{\mathbf{p}} + f(t, \mathbf{p}) \right) e^{-ip \cdot \mathbf{x}} + \left(a_{\mathbf{p}}^{\dagger} + f^*(t, \mathbf{p}) \right) e^{ip \cdot \mathbf{x}} \right]$$

We can see the time dependent ladder operators $a_{\mathbf{p}}(t) = a_{\mathbf{p}} + f(t, \mathbf{p})$

$${\cal H} = \int rac{d^3 p}{(2\pi)^3} \, {\cal E}_{f p} \, \left[\left(a^\dagger_{f p}(0) + h^*({f p})
ight) \left(a_{f p}(0) + h({f p})
ight) - |h({f p})|^2
ight] \; .$$

Different ladder operators in the Hamiltonian and field. No mutual eigenstate of particle number and Hamiltonian exists (for all times).

Vacuum decay probability

Initial vacuum $|0\rangle$ gains a nonzero particle number expectation value after time *t*

$$\mathcal{N}_0(t) = \int rac{d^3 p}{(2\pi)^3} \langle 0 | a^\dagger_{f p}(t) a_{f p}(t) | 0
angle = 2 \int rac{d^3 p}{(2\pi)^3} \left(1 - \cos(E_{f p} t)
ight) | h(f p) |^2 \, .$$

Eigenstates of the Hamiltonian form a basis so we can insert them with the identity in the expression

$$P_{0\rightarrow n}(t) = \int \frac{d^3 p_1 \cdots d^3 p_n}{(2\pi)^{3n} 2E_{\mathbf{p}_1} \cdots 2E_{\mathbf{p}_n}} |\langle \mathbf{p}_1, \cdots, \mathbf{p}_n| U(t,0) |0\rangle|^2$$

Result is a Poisson distribution with time dependent particle number expectation value

$$P_{0\to n}(t) = \frac{e^{-N_0(t)}}{n!} \left[N_0(t)\right]^n$$

Small and large time behaviour

Small time behaviour slower than exponential decay.

$$\mathcal{P}_{0
ightarrow 0}(t) = \exp\left\{-2\int rac{d^3q}{(2\pi)^3}\left(1-\cos(E_{\mathbf{q}}t)
ight)\left|h(\mathbf{q})
ight|^2
ight\}\sim e^{-\lambda t^2}$$

With N repeated measurements, survival prob. after T = Nt

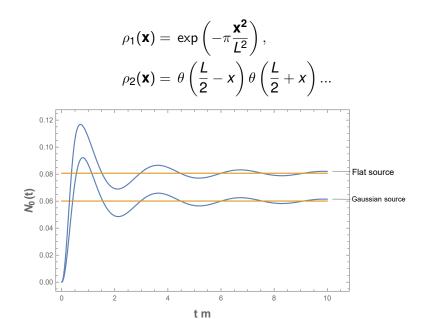
$$P_{0 \to 0}(T) = (P_{0 \to 0}(t))^N \approx \exp\left[-N\lambda t^2\right] = \exp\left[-\frac{\lambda}{N}T^2\right] \xrightarrow{N \to \infty} 1$$

Zeno effect: initial state is preserved by repeated measurement for as long as we want

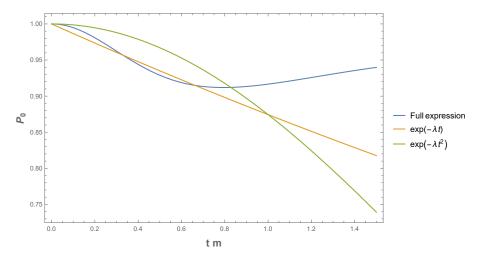
For large time, the oscillation term dies out (Riemann-Lebesgue):

$$\lim_{t\to\infty}N_0(t)=2\int\frac{d^3p}{(2\pi)^3}\left|h(\mathbf{p})\right|^2<\infty.$$

Numerical examples



Small time behaviour II



 Vacuum survival probability and some approximations for the Gaussian shaped source The particle density distribution is well-defined for large volume

$$\lim_{L \to \infty} \lim_{t \to \infty} \frac{1}{L^3} N_0(t) = 2 \frac{g^2}{m^3} \qquad \text{(flat source)},$$
$$\lim_{L \to \infty} \lim_{t \to \infty} \frac{1}{L^3} N_0(t) = \frac{1}{\sqrt{2}} \frac{g^2}{m^3} \qquad \text{(Gaussian source)}.$$

Different prefactor depending on shape; the tails matter (somewhat)

One particle Scattering

With initial condition

$$|\psi_1
angle = \int rac{{\mathcal O}^3 k}{(2\pi)^3 2 E_{f k}} \; \psi_1({f k}) \; |{f k}
angle,$$

and the n-particle partial wave of the time evolving vacuum

$$\psi_{0}(t;\mathbf{p}_{1},\cdots,\mathbf{p}_{n})=\langle\mathbf{p}_{1},\cdots,\mathbf{p}_{n}|U(t,0)|0\rangle$$

Vacuum decay causes dynamics in scattering

$$\begin{aligned} \langle \mathbf{p}_{1}\cdots\mathbf{p}_{n}| \ U(t,0) |\psi_{1}\rangle &= -\psi_{0}(t;\mathbf{p}_{1}\cdots\mathbf{p}_{n}) \int \frac{d^{3}k}{(2\pi)^{3}\sqrt{2E_{\mathbf{k}}}} \ f^{*}(t,\mathbf{k}) \ \psi_{1}(\mathbf{k}) \\ &+ \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left[\psi_{1}(\mathbf{p}_{j}) \ e^{-iE_{\mathbf{p}_{j}}t} \ \psi_{0}(t;\mathbf{p}_{1},\cdots\mathbf{p}_{j-1},\mathbf{p}_{j+1},\cdots,\mathbf{p}_{n}) \right]. \end{aligned}$$

First term: absorption and vacuum decay into *n* particles, Second term: free propagation and vacuum decay into n - 1 particles

Conclusion

- Contrary to what was thought historically, we find scattering of which a key component is the vacuum decay
- Past arguments rely on the adiabatic switching off. This changes the algebra of the operators, even if done at infinity, which gives different results than the exact calculation
- The vacuum decay is conceptually similar to the Schwinger mechanism. The exact calculations show qualitative differences to the expected result, such as a saturation of particle number, non-exponential decay and Zeno effect
- Vacuum decay might be a relevant non-perturbative production mechanism of the dilaton, whose production is suppressed at the tree level

Thank you for your attention!