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Motivation

• The properties and existence of dark matter is one of the most
fascinating questions in cosmology.

• The scale-free nature of gravitational interaction in both Newtonian
gravity and the general theory of relativity gives rise to the concept of
self-similarity

• This implies that the governing partial differential equations are
invariant under scale transformation if we consider appropriate matter
fields.

• Self-similar solutions (SSs) have a wide range of applications in
astrophysics

• We studied different kinds of dark fluid models with self-similar
solutions.
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Self-similarity in General Relativity

• In GR, the concept of SSs is not quite straightforward because GR
has general covariance against coordinate transformation.

• Can be seen in two ways: Properties of the space-time, and
properties of the matter fields [Cahill and Taub (1971)]

• Self-similarity of the space-time ⇒ Homothetic vector fields (HVF):

Lξ gµν = 2αgµν

The kinematic self-similar solution can be defined via a kinematic
self-similar vector ξ (KSS). The KSS vector satisfies the following
identities:

Lξhµν = 2δhµν (1)

Lξuµ = αuµ (2)

The definition of the hµν = gµν + uµuν projection tensor.
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General Spherically Symmetric Space-time

The line element of the general symmetric spacetimes is given by:

ds2 = −e2Φ(t,r)dt2 + e2Ψ(t,r)dr2 + R(t, r)2[dθ2 + Σ(k, θ)2dϕ2] (3)

where,

Σ(k, θ) =


sin(θ), k = 1
θ, k = 0
sinh(θ), k = −1

We adopt comoving frames:

uµ = (e−Φ, 0, 0, 0)
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Equation of State

We are interested in finding kinematic self-similar solutions for different
dark energy models. We are interested to find solution when the following
linear equation of state (EOS1) are used:

p = w(ξ)ρ, (4)

where the w parameter is explicitly depend on the ξ similarity variable.
Linear equation of state are widely used in cosmological astrophysics to
describe dark matter, dark energy as well as ordinary matter. The other
equation of state we used is more restricted (EOS2):

p = w(R(r, t))ρ, (5)
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Solutions and Summary

From this analysis, we showed that for the first EoS p = w(ξ)ρ, the
relevant solutions yet we find are the following:

Second kind, tilted Homothetic Static
Second kind, parallel Flat FRWL

Second kind, orthogonal Homothetic Static

Zeroth kind, tilted No solution
Zeroth kind, parallel No solution

Zeroth kind, orthogonal All static solution

We are currently working on the solutions, where the EOS2 is used, and
we are also interested in those solutions, where bulk viscosity is added to
the Tµν.
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▶ How universal is thermodynamics?
▶ Gravity?

∆φ = 4πG

[
ϱ+∇ ·

(
C
∇ϱ

ϱ

)]
▶ Quantum mechanics? =⇒ Korteweg fluids =⇒ Bohmian

(hydrodynamical) formulation of QM
▶ How universal is holographic property?

ϱv̇ = −∇ ·Pperfect
?⇐⇒ ϱv̇ = −ϱ∇Φ

▶ Does a thermodynamically consistent family of fluids exist? =⇒
YES



Thank you for your attention!
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Silicon Tracking System of CBM experiment
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• Silicon Tracking System is the key tracking detector of CBM experiment

• 8 Tracking Stations inside 1 T.m superconducting dipole magnet

• Material budget per station: 0.3 % - 2 % X0

• Power dissipation ~ 40 kW in ~ 3 m3 

• Radiation tolerance: ≤ 1014 neq cm-2 

• Sensor temperature 10 °C at EOL
• Self-triggering Front End Electronics outside the physics aperture
• cooled at -20 °C using 3M NOVEC 649

Silicon Tracking System is designed to provide good momentum resolution (< 1.5 %) with tracking efficiency (< 97 %)  -> Low 
material budget (exp challenge)

STS expands reconstruction horizons from 3D to 5D with spatial, timing and amplitude in free streaming mode essential for CBM goals



Integration of Silicon Tracking System
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Experimental challenge for STS: Optimize material of the components under acceptance region

STS 3 stations STS 5 stations

• Module assembly procedure has been developed and tested in the lab as well as with beam
• Ladder Assembly has been optimized with achievable mounting precision of ± 100 µm
• Detector integration aspects has been understood using mechanical and thermal demonstrators 

Modular STS design has been prepared for 
enhanced flexibility: allowing first 3 stations 

to be detachable during the maintenance

Assembly and testing procedure is well established and module series production has started



mSTS: functional prototype at SIS 18
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Pre-liminary results: Hit reconstruction efficiency of 97 % is reached using tracks from station (6 modules) and an external 
detector (TOF) as reference 

• mini-CBM is the small precursor of full scale CBM detector
• mini-STS operation involves using STS modules in real data taking scenario
• 2 tracking stations (sensor layers) 12 × 12 cm2  and 18 × 18 cm2  arranged on 2 stations without magnetic field

• 11 modules (<1 % of STS modules) mounted on 4 ladders
• Testing of hit reconstruction performance, timing resolution, vertex reconstruction 
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sPHENIX

� sPHENIX is located at the Relativistic Heavy Ion Collider (RHIC) at 
Brookhaven National Laboratory (BNL)

� It will study properties of Quark Gluon Plasma by various probes
� The commission of the detector began in May 2023
� Strength of the magnetic field is 1.4 T
� One of its subdetectors is the Time Projection Chamber (TPC)
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TPC

� It is the central tracking detector of the experiment
� The working gas of the TPC is Ar/CF4 60:40
� Amplification of the electron is carried out using a stack of four Gas 

Electron Multipliers (GEMs) (quad-GEM), inspired by ALICE
l 36 modules are placed per side
l Each stack contains two standard and two large pitch planes
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System characterization
• A voltage divider is used to supply operational 

voltages for GEMs.
• When powering GEMs with a resistor chain only one 

high voltage (HV) channel powers a whole module. 
• If small resistor values are used in the chain, in the case 

of a spark, a large amount of current (compared to the 
nominal) will be driven through the system. A large 
amount of energy will be dissipated.

• Large resistor values limit the energy of sparks, but it is 
harder to detect sparks through the power supply 
current.

• A capacitor connected to the bottom of the bottom 
GEM is used as a pickoff capacitor for triggering and 
event counting.
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Digitizing spark signals
• Main requirement of the spark signal digitizer system 

was being able to continuously monitor 72 channels 
simultaneously with fast and reliable signal detection

• The original signal is bipolar and has high frequency, 
requires high-speed and expensive ADCs

• The idea is to convert this signal to a unipolar, pulse-
like signal that can be digitized with a slower ADC

• For this, we designed an absolute value-integrator 
board. It takes the absolute value of the input signal 
and then integrates that
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Digitizing spark signals
• The outputs of the absolute value boards are connected 

to a digitizer board
• This board has eight 9-channel ADCs connected to an 

FPGA
• The digitizer board is connected to a PC using PCI-

Express communication
• This PC is able to communicate with the high voltage 

power supplies and intervene in their operation using 
a TCP/IP connection in case of a spark is detected



Thank you for your attention!
Tamas Majoros
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LHC – CMS - BTL



BTL Module



SiPM Detector



The module tester



Thank you for your attention!
David Baranyai
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FT0
– Cherenkov arrays (total 208 pixels)
– Minimum-bias and centrality trigger generation
– Collision time and vertex position calculations.
– Excellent time resolution.
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ALICE Fast Interaction Trigger (FIT)

FDD-A

FT0-A
FDD-A

FV0

FT0-C

FDD-C

IP

FV0

FT0-A

FT0-C

→ Extensive trigger menu (minimum-bias and centrality-based triggers)
→ Collision rate monitoring and online luminosity feedback to the LHC
→ LHC beam induced background monitoring

FDD
– Forward Diffractive Detector
– Plastic scintillator arrays (total 16 pixels)
– Diffractive and ultra-peripheral events tagging

FV0
– 48 plastic scintillator cells
– Large acceptance – 144 cm diameter
– Event centrality determination

FDD-C



Sahil Upadhyaya 23rd Zimányi School Winter Workshop on Heavy-ion Physics, Budapest, Hungary – December 4-8, 2023 3

The ALICE Fast Interaction Trigger performance and upgrade | FIT Performance

FT0 time 
resolution in 
pp 13.6 TeV

FV0 charge  vs FT0C charge  
in Pb-Pb collisions at 5.36 TeV

FV0 - 4 ADC channels/MIP
FT0 - 14 ADC channels/MIP

FT0 collision 
time Vs  FT0 
vertex in Pb-Pb 
5.36 TeV

Primary vertex 
vs. FT0 vertex in 
Pb-Pb 5.36 TeV

FIT Performance
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The ALICE Fast Interaction Trigger performance and upgrade | FIT Upgrade

FIT Upgrade

Current FIT FEE
(based on FT0)

Upgrade plans for Run 4
– Replacement of analog with digital electronics based on FPGA and RFSoC
– Increase ADC dynamic range for charge measurements.
– Online tagging of pileup events 



Thank You !
Köszönöm !
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Introduction

➢ In heavy ion collisions, quarkonium can be used as a probe of quark-gluon

plasma(QGP) properties.

➢ The production mechanism of heavy quarkonium is not fully understood by

current models, e.g;

➢ Physics Goal: Investigate CS and CO Upsilon production mechanism by

looking at Upsilon-hadron azimuthal correlations 

➢ We employ the PYTHIA event generator to simulate pp collisions at 500 GeV

to study azimuthal angular correlation.

➢ This study will be used as a reference for STAR measurements.

Color singlet (CS): 𝑄 ത𝑄 produced directly in a 

color-neutral state in association with a gluon

Color Octet (CO): 𝑄 ത𝑄 can be produced in 

any colored or color-neutral state, with

any quantum numbers +1LJ

▪ pT > 0.2 GeV/c;

▪ |η| < 1 (Central pseudorapidity range) or 

2.4< η <4 (Forward rapidity range) -> the double peak is expected
[E. Basso et al., PoS, EPS-HEP2015, 191 (2016)].

▪ directly produced Upsilon(1S) - no feed-down contribution;

▪ dielectron decay (Υ (1S) → e−e+) only.

➢ Pion selection:

➢ Upsilon  selection:



Results

𝛶 + hadron azimuthal correlations for CS and CO production mechanism for central – central pseudorapidities

𝛶 + hadron azimuthal correlations for CS and CO production mechanism for central – forward pseudorapidities.



➢ The Υ + hadron correlation is characterized by an away-side peak at ΔΦ = π.

➢ Upsilon – hadron azimuthal correlations were obtained for the Υ particles generated for both the CS and CO 

production mechanisms.

➢ Stronger correlation in CS case compared to the CO.

➢ Correlation with a double-peak structure hasn`t been observed in the production of Υ particles via

a color singlet state for pions located with forward pseudorapidities. 

➢ The results of the simulation will serve as a basis for comparison with the experimental data gathered from the 

STAR experiment conducted at the RHIC in BNL

Conclusions

Thank you for attention!
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Exclusive measurement of J/ψ photoproduction

• p + p → p1 + J/ψ + p2

• J/ψ → e++ e- decay channel

• Interactions of proton‘s (p1) electromagnetic fields, which are taken as fluxes 
of photons, with the other proton (p2)

• Photons can fluctuate to a virtual hadronic state (qq) which scatters of other 
proton and turns into a real vector meson (J/ψ)

• Interaction of qq pair with target proton through Pomeron exchange

_ 

Diffractive process

• Presence of one or both incoming particles that remain 
intact after a collision detected by special forward 
detectors - Roman Pots

• Produced central system of particles X separated by 
large rapidity gaps (LRG) from the forward protons

_ 

Michaela Sverakova 1/3



Goals of the analysis
J/ψ photoproduction in p+p collisions at √s = 510 GeV

Data from 2017 collected at the STAR experiment

This analysis utilizes the unique ability of the STAR experiment, which 
is the detection of forward-going protons using Roman Pot detectors

• Proton p1 from Pomeron vertex (high pT) detected in Roman Pot 
detectors

• Proton p2 from photon vertex (low pT) scatters at a small angle, not 
measured in Roman Pots

• The electron and positron tracks (J/ψ → e++ e- ) are detected in the 
Time Projection Chamber and Barrel Electromagnetic Calorimeter

Michaela Sverakova 2/3

A) Cross-section of J/ψ photoproduction as a function of  transferred momentum |–t|

B) Possibility to have a precise measurement of the pT of the virtual photon thanks to the
measurement of forward proton in Roman Pot detectors: - p2,T = (pJ/ψ + p1)T



Results
MISSING pT

• Momentum conserved in a collision (p1 + p2 + pJ/ψ)T = 0
• J/ψ and proton measured

• pT of virtual photon is the missing pT : - p2,T
= (p1+pJ/ψ)T

UNCORRECTED INVARIANT MASS AND RAW YIELD

• Prominent peak visible in the uncorrected 
invariant mass distribution

• Raw yield of J/ψ → e++ e- in p+p collisions with 
RP proton tagging extracted for the first time
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A: Peak at zero consistent with the exclusive process
B: Broad structure from 0.3 GeV/c is consistent with 

non-exclusive processes
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● Heavy-flavor production can be described with the factorization approach, in 
which the incoming hadron PDFs, the parton-parton scattering cross-
section and the fragmentation function are independent:

● Traditional assumption: fragmentation are universal for different collision 
systems
– FF often determined from e-e+ (or e-p) collisions, where PDF plays no (or less 

important) role
● Recent experimental results (ALICE, CMS, LHCb) on charmed baryon 

production do not support this assumption!

Motivation
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● Experimental results: significant enhancement in the ΛC/D0 ratio in the low pT range compared to predictions from e+e-: no universality!
● Multiplicity dependence: connected to the event activity. Needs to be better understood!
● Figure 1: String formation beyond leading color (CR-BLC) (arXiv:1505.01681 [hep-ph]) can describe the ΛC/D0 enhancement in 

simulations.
● The ΛC/D0 ratio in the CR-BLC model depends on the event-activity, and the enhancement is connected to the underlying event activity, and 

does not depend significantly on the processes inside the jet region. What is the prediction for the Λb/B+ ratio?
● Figure 2: The Λb/B+ ratio increases with the number of MPI.
● Figure 3: Using event classifiers we showed that the beauty enhancement is connected to the underlying event activity (RT), 

and not to the jet region activity (RNC)! 

Charm and Beauty baryon enhancement
Z.V., R.V., J. Phys. G: Nucl. Part. Phys. 49 (2022) 075005 [arXiv:2111.00060]     Z.V., A.M., R.V., J. Phys. G: Nucl. Part. Phys. 50 (2023) 075002 [arXiv:2302.09740]
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Many different event-activity classifiers can be 
utilized!

● NCH – multiplicity at mid-rapidity (|η| < 1): number of final state charged particles, describing 
the activity of the whole event.

● Nfw - forward multiplicity at forward rapidity (2 < η < 5),
● RT = NCH

transverse / <NCH
transverse>: underlying event activity, 

region excluding jets from the leading process. (π/3<|Δϕ|<2π/3)
● RNC = NCH

near-side cone / <NCH
near-side cone>: activity connected to 

the jet region, containing the leading process. √(Δϕ2+Δη2)<0.5
● S0: spherocity, measures how  spherical or jet-like the event is.
● Flatenicity (ρ): the relative standard deviation of the pT

cell distribution (event-by-event):
ρ = σpT

cell / <pT
cell>

On the poster: many interesting results on the other event classifiers!

Thank you for your attention!
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Motivation
• Dominantly produced in initial hard scatterings

•  Heavy quarks: 𝑚𝑞 >> Λ𝑄𝐶𝐷,  𝑚𝑞 >> T𝑄𝐺𝑃

• Production cross-sections can be calculated in perturbative QCD 

• Participate in the whole medium evolution                    

Ideal probes of QGP
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Heavy-flavor electrons (HFE) - Electrons from semi-leptonic decays of open heavy-flavor hadrons

STAR: JHEP06(2023)176
PHENIX: V, Phys. Rev. C 84 (2011) 044905
STAR: Phys. Rev. Lett. 98 (2007) 192301. 

HFE suppression in the QGP in Au+Au 
@ 200 GeV within 3.5 < 𝑝T <  8 GeV/c

Significant energy loss of heavy quark (HQ) in QGP

Explore HQ energy loss at lower collision energy (54.4 GeV)

lower collision energies?



• 𝑵𝑰𝑵𝑪𝑳 - inclusive electron yield

• 𝐩𝐮𝐫𝐢𝐭𝐲 -  purity of inclusive electrons

• 𝑵𝑷𝑬 - photonic electron yield

• 𝜺𝑷𝑬 - photonic electron identification efficiency

• 𝜺𝐭𝐨𝐭 - total efficiency of electron identification and reconstruction

PE identification

07/12/2023 Zimányi School 2023 2

General idea of the analysis Photonic electron (PE) sources: 
1. Dalitz decays (𝜋0/𝜂 → 𝛾𝑒+𝑒− )
2. Gamma conversion (𝛾 → 𝑒+𝑒−, 𝜋0/𝜂 → 𝛾𝛾)

𝑵𝑯𝑭𝑬 =
𝑵𝑰𝑵𝑪𝑳 ⋅ 𝐩𝐮𝐫𝐢𝐭𝐲 − 𝑵𝑷𝑬/𝜺𝑷𝑬

𝜺𝐭𝐨𝐭
− 𝑵𝑯𝑫𝑬

𝑵𝑵𝑷𝑬

Hadron-decayed electrons (HDE):
• 𝜌, 𝜔, 𝜙  
•  J/ψ, Υ 
•  Drell-Yan 
•  𝐾𝑒3

Ongoing + correction for HDE is planned
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Results
Inclusive electron yield

𝜀total 
data

Simulation

• 1/𝛽 cut 
• n𝜎e cut
• TOF matching

• BEMC matching
• E/p cut
• TPC tracking

Photonic electron yield

Analysis ongoing in STAR

Ongoing
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Accessing hadronic interactions with femtoscopy

1

Workflow for fixing the source:
• Measure correlation function C(k*)
• Fix interaction Ψ(k*)
• Study source S(r*)

georgios.mantzaridis@tum.de Zimányi School 2023



Accessing hadronic interactions with femtoscopy

1

Workflow for accessing interaction:
• Measure correlation function C(k*)
• Fix source S(r*)
• Study interaction Ψ(k*)

⇒ Accessing exotic interactions, e.g.:
p–Ω and Λ–Ξ (multi-strange)
p–D+ (charmed)

georgios.mantzaridis@tum.de Zimányi School 2023



Common baryonic source in pp collisions

2georgios.mantzaridis@tum.de Zimányi School 2023

How to constrain the source size:
• Measure correlation function C(k*)
• Fix interactions Ψ(k*) -> p–p & p–Λ
• Take short-lived resonances into account
• Extract source as a function of mT

PLB 811 (2020), 135849



Common baryonic source in pp collisions
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How to constrain the source size:
• Measure correlation function C(k*)
• Fix interactions Ψ(k*) -> p–p & p–Λ
• Take short-lived resonances into account
• Extract source as a function of mT

PLB 811 (2020), 135849
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600 billion MB 
events collected 

in 2022 alone

Observation:
Source radius increases 
with increasing multiplicity 
and decreases for 
increasing mT

georgios.mantzaridis@tum.de Zimányi School 2023

LHC Run 3

§ First multiplicity and mT differential measurement of p–p correlations
§ First baseline measurement for constraining the source for all future femtoscopy studies in Run 3 with ALICE

è statistically limited channels and three body correlations accessible with Run 3 data
§ Next steps: Extend source measurement to p–Λ and core source

Current status: Starting femtoscopy in Run 3

LHC Run 3
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Calculation of Coulomb interacting Bose-Einstein correlations in Fourier space 

Bose-Einstein correlation function

• Source function: 𝑆(𝑥, 𝑝)

• Single- and two-particle momentum distributions: 

 𝑁1 𝑝 , 𝑁2 𝑝1, 𝑝2

• Bose-Einstein corr. function:  

 𝐶2 𝑝1, 𝑝2 =
 𝑁2 𝑝1,𝑝2

𝑁1 𝑝1 𝑁1(𝑝2)
  

• Non-interacting particles:    
  𝐶2 𝒌, 𝑲 = 1 +

ሚ𝑆 2𝒌, 
𝑲

2

𝟐

ሚ𝑆 2𝒌, 
𝑲

2

𝟐 
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Calculation of Coulomb interacting Bose-Einstein correlations in Fourier space 

New formula for Lévy-stable sources

• Koonin-Pratt formula:

𝐶2 𝑘 =  න 𝑑3𝑟 𝐷 𝑟 𝜓𝑘(𝑟) 2

• Key assumptions: spherical symmetry and Lévy-

stable distribution of the source

• Calculation was done by inserting an exponential 

„regularization”,  𝑒−𝜆𝑟 , and taking  𝜆 → 0 at the end 

• Result :

𝐶2 𝑘 = 𝒩 2 1 + 𝑓𝑠 2𝑘 +
𝜂

𝜋
𝒜1𝑠 + 𝒜2𝑠
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Calculation of Coulomb interacting Bose-Einstein correlations in Fourier space 

Comparison with the original numerical method

• Previous method: the values of the correlation 

function were pre-calculated for various parameters, 

and saved in a large table

• New method: simple and more exact handling of the 

Coulomb final state interaction

• Natural next step: extend the methodology to non-

spherical sources



Multi-dimensional investigation of the pion pair-
source in heavy-ion collisions with EPOS
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Theoretical framework and methods

➢ EPOS: event generator of heavy-ion collisions

➢ Event-by-event and 3 dimensional investigation to see if the Lévy shape is the result of event-
averaging or direction averaging

➢ Pion pair source function fitted with Lévy distribution

D 𝑟 = ℒ 𝑟, 2
1

𝛼𝑅𝑜𝑢𝑡, 2
1

𝛼𝑅𝑠𝑖𝑑𝑒 , 2
1

𝛼𝑅𝑙𝑜𝑛𝑔, 𝛼

➢ Event-by-event distributions of pion pairs

➢ Separated the measurements into centrality and 𝑘𝑇 classes

➢ 3 dimensional pair-distribution ⇒ 1 dimensional projections according Bertsch-Pratt-coordinates
⇒ fitting 1 dimensional Lévy-functions to the projections

ℒ 𝑟, 𝑅𝑜𝑢𝑡,𝑠𝑖𝑑𝑒,𝑙𝑜𝑛𝑔, 𝛼 =
1

𝜋
න

0

∞

𝑑𝑞 cos 𝑞𝑟 𝑒−
1
2

𝑞𝑅𝑜𝑢𝑡,𝑠𝑖𝑑𝑒,𝑙𝑜𝑛𝑔

➢ For the 3 projection of a 3 D distribution: fitting simultaneously with same Lévy exponent but
different Lévy scales

07. 12. 2023.
MULTI-DIMENSIONAL INVESTIGATION OF THE PION PAIR-SOURCE IN HEAVY-ION COLLISIONS WITH 

EPOS



Results
➢ Lévy-exponent: 𝛼 ≈ 1.6 − 1.7, not Gaussian (𝛼 ≠ 2)

➢ Lévy-scale: different values for the different projections (with the same α-s)

➢ Lévy shape is not the result of event-averaging or direction averaging

➢ Results agree with 1D analysis of Ref. D. Kincses, M. Stefaniak and M. Csanád, Entropy 24 (2022) no.3, 308

07. 12. 2023.
MULTI-DIMENSIONAL INVESTIGATION OF THE PION PAIR-SOURCE IN HEAVY-ION COLLISIONS WITH 

EPOS

Thank you for your attention!
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Volume dependence of the phase diagram

• Finite size in lattice QCD
infinite volume limit

• Infinite size in field
theoretical calculations

• Finite size fireball in HIC
(expanding, fluctuating ...)

• Core of a compact star
"infinitely" large

1 3



Momentum space constraints

How to account for the finite system size?
In effective models usually via momentum space constraints

x

y

L

⇒
Fourier

(and simplification)

Finity system 
with linear size L

px

py ∆p

Cubic volume 
with APBC

px

py
∆p

Cubic volume 
with PBC

px

py

∆p

Low momentum 
cutoff (spherical)

Do the different approaches give the same results?
Are these constraints enough or do we miss something?

2 3



Answers and further questions

SEE YOU
THERE !

VOLUME DEPENDENCE 
OF THE CRITICAL ENDPOINT 
AND THE BARYON NUMBER 
FLUCTUATIONS

Győző Kovács1 2, Péter Kovács1 2, Pok Man Lo3,
Krzysztof Redlich3 and György Wolf1

1 Wigner Research Centre for Physics, Budapest, Hungary.
2 Eötvös Loránd University, Budapest, Hungary.
3 University of Wrocław, Wrocław, Poland.

ELSM

Introdution

Low momentum cutoff

Discretization

Contrary to field theoretical calculations, heavy-ion collisions always carry the effects of finite system size, which might 

affect the thermodynamics and the phase diagram. These effects can be studied in effective models by considering the  

finite extent via the restriction of the momentum integrals with discretization or a low momentum cutoff. We investigated  

the finite-size effects in a vector meson extended Polyakov quark-meson model with both scenarios [1, 2]. It was found 

that the modification of the phase diagram is influenced not just by the chosen momentum space constraint but more 

importantly by the treatment of vacuum size, which explain certain differences between previous results. Moreover, 

we also studied the volume dependence of the baryon fluctuations in the neighborhood of the critical endpoint.

• UV-improvement [6] is applied (with modifications), 

which eases the calculation, and renormalization is possible.

• Besides the ELSM, more simple quark-meson models were 

studied. Different finite-volume behavior was found for LSMs 

with a CEP being below or above μq     /T     ≈ 4.

• The (Polyakov loop modified) Fermi-Dirac distribution in the 

matter part of Ωqq for T   0 and μq > m gives a Fermi-surface. 

The discretized modes enter below this one by one  

as it extends for increasing μq.

• There will be multiple inflection points, 

therefore multiple quasi-transitions  

that might be first-order at T = 0.  

Thus, multiple second-order points 

can appear in the phase diagram.

• Using APBC with infinite vacuum the 

CEP moves to lower T and larger μq.  

The leading second-order point might 

change when L decreases, depending 

on the location of the CEP at L = ∞.

Fig. 3. The "dominant" CEPs for APBC with infinite  

volume vacuum contribution for the model in [4] (LSM 

A), the mσ = 600 MeV model in [7] (LSM B), the mσ = 

800 MeV model in [7] (LSM C) and the ELSM [3].

Fig. 4. The volume dependence of the critical 

endpoint for LSM A-C and the ELSM using PBC 

with infinite vacuum size or the vacuum being 

only modified in the zero mode.

Fig. 5. The kurtosis through the CEP for  

different sizes in the T and μq directions.

The ELSM is an advanced quark-meson mo-

del, including four meson nonets and 2 + 1 

flavor constituent quarks in the fermion sec-

tor [3]. The mesonic part of the Lagrangian 

contains the dynamical and the meson-me-

son interaction terms up to the fourth order, 

taking care of the symmetry properties and 

also symmetry breaking (U(1)A anomaly,  

explicit breaking). The constituent quarks  

are included in a Yukawa-type Lagrangian.

Functional integration over the fermionic fields 

and the Matsubara summation is carried out. 

The finite volume is taken into account in the 

resulting (renormalized) vacuum and matter 

contribution via momentum space restriction. 

This can be a λ = π/L low momentum cutoff [1] 

or a discretization with modes nΔp and (n + 1/2)

Δp with Δp = 2π/L for periodic and antiperiodic 

boundary condition, respectively.

The thermodynamics is determined from the  

mean-field level grand potential consisting of

•  the classical potential,
•  the fermionic one-loop correction,
•  and the Polyakov loop potential.

The field equations are given by minimizing Ω(T, μq) with 

respect to the order parameters, фN, фS, Φ and Φ, being the 

scalar-isoscalar meson condensates and the Polyakov 

loop variables, respectively. The parameterization of the 

model was carried out at T = 0, μq = 0 and infinite size with 

χ  method using∼30 physical quantities [3].

• One can take into account the size depen-

dence in the whole Ωqq(T, μq) fermion contribu-

tion including the vacuum and the matter part.

• The vacuum contribution Ω qq can be kept 

at L = ∞, which is equivalent to previous LSM 

calculations [4,5], where Ω qq was absent.

• The CEP moves to lower temperatures and 

higher chemical potential in both cases, but 

it disappears – around L ≈ 2.5 fm – only when 

the vacuum size is finite.

• With finite size vacuum the transition temperature  

decreases with the decreasing system size. The chirally 

broken phase vanishes around L ≈ 2 − 2.5 fm,  

which can be seen from the size-dependent behavior 

of vacuum physical quantities. The mass of the axial 

partners becomes degenerate and the constituent 

quark masses, especially for the light quarks, decrease.

• With infinite vacuum size the chirally broken phase 

even extends with the decreasing system size.

[1] G. Kovács, P. Kovács, P. M. Lo, K. Redlich and G. Wolf, PoS FAIRness2022, 029 (2023) [arXiv:2302.12925 [hep-ph]].

[2] G. Kovács, P. Kovács, P. M. Lo, K. Redlich and G. Wolf, [arXiv:2307.10301 [hep-ph]].

[3] P. Kovács, Z. Szép and G. Wolf, Phys. Rev. D 93, no.11, 114014 (2016) [arXiv:1601.05291 [hep-ph]].

[4] L. F. Palhares, E. S. Fraga and T. Kodama, J. Phys. G 38, 085101 (2011) [arXiv:0904.4830 [nucl-th]].
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Fig. 1. The size dependence of the phase diagram 

using low momentum cutoff with infinite (top) and 

finite (bottom) size vacuum term.
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• With volume-modified vacuum the solution is absent 

for ELSM at L ∼ 5 fm. The effect of the L-dependent

vacuum might be still imitated by the size modification 

only for the lowest modes, as it was done for PBC in [4].

• For PBC with infinite vacuum size, the CEP moves  

to larger T and lower μq extending the first-order 

boundary for decreasing L but an unphysical effect  

of the zero mode in the matter contribution appears 

below L ≈ 5 fm. Including the volume dependence  

for the zero mode in the vacuum the trend is reversed, 

hence, becomes similar to APBC, and the unphysical 

effect disappears. This shows how the size-dependent 

vacuum would modify the L-dependence of the CEP.

• The baryon fluctuations can be characterized by 

the χ  = ∂  (p/T  )/∂(μq/T)   generalized susceptibiliti-

es, which depend on higher power of the correlation 

length. Their ratios carry no explicit volume depen-

dence but can depend on the system size implicitly.

• The size dependence of the kurtosis κσ  = χ /χ  was 

studied in the vicinity of the CEP with low momentum 

cutoff and size dependent vacuum term.

• The kurtosis κμ        (T/T     ) shows an increasing 

behavior on both sides, not very close to the CEP. 

However, this trend might be a consequence of the 

rescaling by T    , since for small volumes the critical 

endpoint moves to low μq values. Therefore it does 

not contradicts previous results in [6].

• In the μq direction κ       (μq/μq   ) shows a decre- 

asing behavior on both side of the CEP. In this case  

the rescalingdoes not change the relative trend,  

but the results might be again affected by the  

change in the location of the CEP.

Baryon fluctuations
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Motivation

• connection between deconfinement and chiral symmetry
restoration in QCD is still not fully understood

• low Dirac modes could be key in understanding this connection
• chiral symmetry breaking is controlled by the density of low

modes (Banks-Casher relation)
• deconfinement is signalled by the ordering of Polyakov loops
• islands of fluctuations in the sea of ordered Polyakov loops are

favorable for Dirac modes ⇒ Dirac modes localize
[Bruckmann et al. (2021)]

• this mechanism is general: test it in other gauge theories with
a deconfinement transition ⇒ SU(2)-Higgs model
[G. Baranka and M. Giordano (2023)]

György Baranka

Localization of Dirac modes in the SU(2)-Higgs model at finite temperature 2 / 5



Localization in the SU(2)-Higgs model

• localized/delocalized modes occupy finite amount/fraction of volume
• mode size ∼ Lα (α: fractal dimension)
• modes are localized up to the mobility edge λc

0.08 0.10 0.12 0.14 0.16 0.18
λ

0

1

2

3

α

Ns = 20, 24

Ns = 24, 28

Ns = 28, 32

β = 2.1, κ = 1.0 (Higgs phase)

György Baranka
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Phase diagram and localization

Localization absent in confined phase, λc → 0 at the crossover
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What is a compact star?
Is it a plum... …or an avokado?
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Studying extra dimensions in compact stars

Spacetime with
1+3+1c

dimensions

Constraints on 
extra

dimensions bases 
on compact star 
observations?
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Why study neutron stars?

Lattice QCD

Nuclear

experiments

→ is there quark matter inside

the heaviest neutron stars?
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Speed of sound and conformality

Source: I. Tews, et al. In: Astrophys.J. 860, 149 (2018)

Important measure: speed of sound

In the conformal limit (high density):

Empirical conformality measures:
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Speed of sound and conformality
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Thank you for your attention!
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