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Development of novel active plasmas  We study how our expertise in advanced beam optics, for example needed
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CLIC Wake Field Monitor as a detuned Cavity Beam Position Monitor:

Explanation of center offset between TE and TM channels
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The Wake Field Monitor (WFM) system installed on the CLIC prototype accelerating structure
in CERN Linear Accelerator for Research (CLEAR) has two channels for each horizontal/vertical
plane, operating at different frequencies. When moving the beam relative to the aperture of the
structure, a disagreement is observed between the center position of the structure as measured with
the two channels in each plane. This is a challenge for the planned use of WFMs in the Compact
Linear Collider (CLIC), where they will be used to measure the center offset between the accelerating
structures and the beam. Through a mixture of simulations and measurements, we have discovered
a potential mechanism for this, which is discussed along with implications for improving position
resolution near the structure center, and the possibility determination of the sign of the beam offset.

Kyrre N. Sjobak et al, arXiv:2307.06681 (2023)
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Finally, the results are in itself interesting in that they
point out important issues with the type of beam posi-
tion monitoring systems as are used here, where unlike
with a typical resonant cavity BPM there is no strong
mode that is being excited. This could inform both fu-
ture wake field monitor designs, and other beam position
monitoring systems based on diffraction of the beam field
through apertures in the beam pipe.
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Conclusion of a long story started by

postdoc Reidar Lillestgl, in 2014
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Vilde F. Rieker, CERN-UiO PhD B h i inst I established
VHEE/FLASH Real Time Dosimetry Monitoring enchmarking against well establisne

and dose-rate independent dosimetry methods
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in front of the beam The Cherenkov light emitted as the
beam passes through water is clearly visible.
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BEAM INSTRUMENTATION FOR REAL TIME FLASH DOSIMETRY:

Beam S'Ze Evaluatlon In CLEAR EXPERIMENTAL STUDIES IN THE CLEAR FACILITY*

V. F. Rieker'?, A. Aksoy?, A. Malyzhenkov, L.M. Wroe, R. Corsini, W. Farabolini,
CERN, Geneva, Switzerland
3 E. Adli, K.N. Sjobak, University of Oslo, Norway

ot
wrt
.t
.t

o - J.J. Bateman?, P. Korysko?, C. S. Robertson 3, University of Oxford, United Kingdom
) x y 'also at University of Oslo, Norway, %also at University of Ankara, Ankara, Turkey
Film T - 3also at CERN, Geneva, Switzerland
YAG —— i
7 1 o S : ’ 8
RFTrack ——  ..% 11 M.E Riekeretal., IPAC’23 5 E
TOPAS —— | I ) * 4
= I 3 Film — T
et b N Y A G + I
771 RFIrack  —~— *
—p— *

o (mm)

TOPAS

ok
wr®
wr®
wr?

o (mm)

10 nC CONV

3 1 T 1 T T
130 140 150 160 170
Depth (mm)
Figure 4: The evolution of the 1 beam size as a function of 10 nC FLASH
depth, as measured by the films and YAG screens irradiated 3 . : . . .
under CONV conditions. 130 140 150 160 170

Depth (mm)

Figure 5: The evolution of the 1o beam size as a function of
depth, as measured by the films and YAG screens irradiated
under FLASH conditions.
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Plasma acceleration (FRIPRO project)

Positron acceleration in plasma wakefields
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A hybrid, asymmetric, linear Higgs factory based on
plasma-wakefield and radio-frequency acceleration
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Comparison of proposed positron schemes (+electron schemes and RF)
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