Status reports and studies

4 CERN Yellow Reports 2018

Details about the accelerator, detector R&D, physics studies for Higgs/top and BSM

Available at:

clic.cern/european-strategy

Updated Staging Baseline 2016

Two formal submissions to the ESPPU 2018

Several Lols have been submitted on behalf of CLIC and CLICdp to the Snowmass process:

- The CLIC accelerator study: Link
- Beam-dynamics focused on very high energies: Link
- The physics potential: Link

Snowmass white paper:

of 2018 Summary Report"

https://arxiv.org/abs/2203.09186

Broadly speaking: "Updated accelerator part

The detector: Link

The CLIC project

O. Brunner^a, P. N. Burrows^b, S. Calatroni^a, N. Catalan Lasheras^a, R. Corsini^a, G. D'Auria^c, S. Doebert", A. Faus-Golfe", A. Grudiev", A. Latina", T. Lefevre", G. Mcmonagle", J. Osborne" Y. Papaphilippou", A. Robson", C. Rossi", R. Ruber^J, D. Schulte", S. Stapnes"; I. Syratchev", W. Wuensch

^aCERN, Geneva, Switzerland, ^bJohn Adams Institute, University of Oxford, United Kingdom, Elettra Sincrotrone Trieste, Italy, dIJCLab, Orsay, France, University of Glasgow, United Kingdom, ^fUppsala University, Sweden

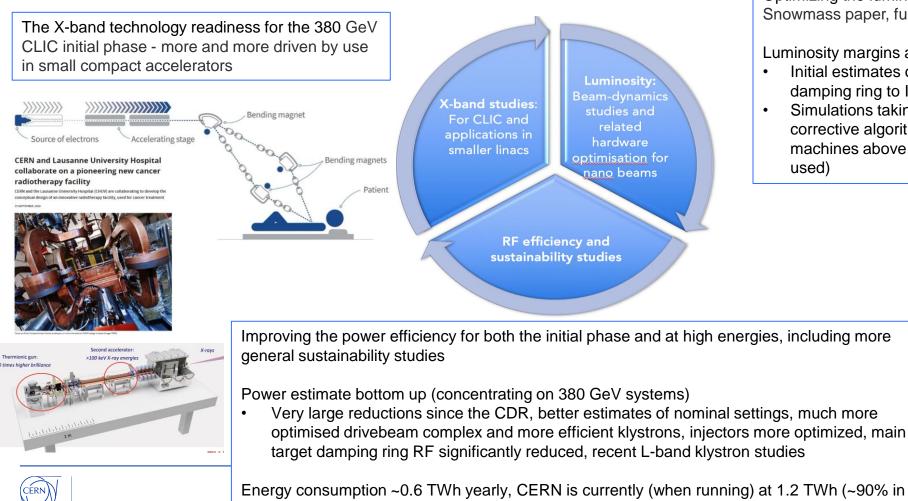
April 4, 2022

Abstract

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e⁺e⁻ coll the CLIC accelerator collaboration, hosted by CERN. The CLIC accelerator has been optimised for three energy stages at centre-of-mass energies 380 GeV, 1.5 TeV and 3 TeV [21]. CLIC uses a novel two-beam acceleration stages an centreventate energies sources, to lev and stev [17]. CLU uses all other two-sum accentation technique, with normal-conducting accelerating structures operating in the range of TMW/m to 100 M/Vm. The report describes recent achievements in accelerator design, technology development, system tests and beam tests. Large-scale CLC-specific beam tests have taken place, for example, at the CLC Test Facility CFFT at CECN [39], at the Accelerator Test Facility ATF2 at KEK [53, 67], at the FACET facility at SLAC [33] and a he FERMI facility in Trieste [36]. Crucial experience also emanates from the expanding field of Free Eb Laser (FEL) linacs and recent-generation the CLIC design parameters are well u ation light sources. Together, they der ance goals are realistic. An alternative CLIC scenario for the first stage, whe e powered by X-band klystrons, is also under study. The implementation of CLIC near CERN has been gated. Focusing on a staged approach starting at 380 GeV, this includes civil eng emphasis on optimising cost and energy efficiency, and the resulting power and The report follows very closely the accelerator p Particle Physics Strategy update 2018-19 [22].

Detailed studies of the physics potential and detector for CLIC and R&D on detector technologies has carried out by the CLIC detector and physics (CLICdp) collaboration. CLIC provide syond Standard Model physics, through direct searches and via a broad set of precis dard Model processes, particularly in the Higgs and top-quark sectors. The physics p stages has been explored in detail [2, 3, 17] and presented in submissions to the Eu

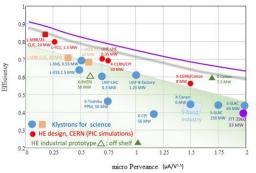
> Submitted to the Proceedings of the US Community Stud on the Future of Particle Physics (Sno


adited by the CLIC Accelerator Steering Group on behalf of the CLIC Ac

On-going CLIC studies towards next ESPP update

Project Readiness Report as a step toward a TDR

accelerators


Assuming ESPP in ~ 2026, Project Approval ~ 2028, Project (tunnel) construction can start in ~ 2030.

Optimizing the luminosity at 380 GeV – already implemented for Snowmass paper, further work to provide margins will continue.

Luminosity margins and increases:

- Initial estimates of static and dynamic degradations from damping ring to IP gave: 1.5 x 10³⁴ cm⁻² s⁻¹
- Simulations taking into accord static and dynamic effects with corrective algorithms give 2.8 on average, and 90% of the machines above 2.3 x 10^{34} cm⁻² s⁻¹ (this is the value currently used)

Readiness Report around ~2025-26

Update wrt Project Implementation Plan document 2018

Key updates:

- Luminosity numbers, covering beam-dynamics, nanobeam studies and hardware, and positron production at all energies
 - Risk reduction (wrt performance), bumps, redundancies
- Energy/power/sustainability: 380 well underway, 3 TeV to be done, L-band klystrons
- Sustainability issues, more work on running/energy models, carbon (construction/operation/disassembly)
- X-band progress for CLIC, smaller machines, industry availability, including RF network
- RF design optimization/development including injectors, R&D for higher energies, gradient (cool/HTS/etc.), power, beam parameters links to plasma (if it can be made)
- Cost update. Changes wrt to 2018, plus impact of going green.
- Physics "update", use for "diversity" types of physics, LDM etc.
- Low cost/power klystron version, with fewer klystrons, 250 GeV

Work in 2024-2026 in connection to Readiness Report – resource needs

RF design and verifications - (includes DR cavity) Xboxes and component prototyping including klystrons - including needs for DEFT (Olivier) and IFAST Xband fundamentals including contract and including HTS and possible experimental activities Module Drive Beam and L-band Positrons Beam-dynamics and parameters including RTML and BDS Instrumentation ATF2 plans Damping Rings Costing ICS opportunities Power estimates Sustainability, CE and ILC support on LC budget

I have assumed DEFT, STELLA, ICS and VULCAN are self supported and covered by a slim annual budget on our side for the unexpected, similar for CLIC specific activities in CLEAR that are in addition to possible specific proposal in the lines above.

Please consider on this single slide:

- Goals for 2024-26 what can be achieved ("deliverables")
- Personnel (QUESTs and students and PJAS and Coll. Contract) needs and ideas
- Material funds year by year 2024-2026
- Possibilities for external funding
- Final summary publication/paper/note possible, standalone or as part of the larger one (e.g. covering cost/power and CO2, or one large covering X-band use and status in smaller setup and facilities) ?

				Background documents	
Intro					
Design and	Performance			Possible	
	at all energi	ies, DB and k	ystron		
	upgrades				
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 A kly 3.3.1 3.3.2	design and performance at 380 GeV	Image: Constraint of the sector of	
		3.4.6	Upgrade from the klystron-based option		
System ove	erview			Possible for all systems	
	from injecto	ors to dumps			
main beam		and drivebea	m la		
	modules				
Technologi		3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7	ator technologies	Possible for technologies	
	include X-ba	and readiness			

Implementa	tion						
	Update plus L	CA n	more about nersonnel for construction and operation		Possible for se	veral topics	
				ect implementation			
		5		LIC stages and construction			
				Civil engineering and infrastructure			
				Annual and integrated luminosities			
		5	2 Cons	ruction and operation schedules			
			5.2.1				
			5.2.2	380 GeV klystron-driven schedule			
			5.2.3	Schedules for the stages at higher energies and the complete project			
			5.2.4	Concluding remarks on the schedule			
		5	3 Cost	estimate			
			5.3.1	Scope and method			
			5.3.2				
			5.3.3				
			5.3.4	Value estimate and cost drivers of the CLIC detector			
			5.3.5	Operation costs			
		5		r and energy consumption			
			5.4.1				
			5.4.2	Power reduction studies and future prospects			
			2000				
Further work	(
	Towards a TDI	R - n	eed to c	ome from/be summarized from sections above	Make detailed enough to avoid background documer		
				e opportunities			
				Physics motivation			
				5.2.1 General concept			
				6.2.2 Dielectric accelerating structures			
				5.2.3 Plasma-based acceleration			
				6.2.4 Luminosity enabling technologies			
			7 CLIC	objectives for the period 2020-2025			
				Accelerator complex			
				7.1.1 Accelerator programme overview			
				7.1.2 Programme implementation, technology demonstrators and collaboration			
			7.2	Detector and physics			
	Include synerg	gies v	with oth	er project (e.g other LCs)			

CERN internal project documentation

Criteria/Metrics for comparison

- Performance
- Physics Reach
- Technical Readiness
- · Total accelerators construction and installation costs (including injectors) material
- · Detectors: baseline assumptions and costs (material)
- · Human resource requirements for accelerator construction and installation (including injectors)
- Project timeline
- · Operation costs: material
- Operation costs: human resources
- · Sustainability considerations and carbon footprint
- Upgrade Potential
- Experimental Community
- Physics diversity potential including the injector chain (if available)

Criteria/Metrics for comparison

- Main parameters and performance
 - · Short description of the colliders and their main components.
 - Short description of the injectors with main parameters (identify new injectors and upgrade of existing ones –if any)
 - · Flexibility and tunability considerations
 - Operation scenarios (see F. Bordry et al., CERN-ACC-2018-0037 presented at SPC in 2018)
 - · Integrated luminosity over the full programme
 - · Energy consumption (including injectors) over the full programme
 - Considerations on the operational experience so far and impact on the possible luminosity ramp-up and time to achieve nominal performance