Advanced geometry
Transformations and modular geometries

Basic geometry concepts

Three concepts are fundamental in the FLUKA Combinatorial Geometry, which have been described earlier in the course:

- Bodies: basic convex objects + infinite planes \& cylinders + generic quadric
- Zones: portion of space defined by intersections (+) and subtractions (-) of bodies (used internally)
- Regions: union of multiple zones (|) (or a single zone)

Complex and modular geometries

3D rendering of LHC IR7

Complex and modular geometry models like the one shown here are built with LineBuilder [A. Mereghetti et al., IPAC2012, WEPPD071, 2687]

Such a geometry model heavily depends on LATTICES (i.e. duplication of existing regions) which are not covered here

In this lecture

- Roto-translation transformations
- ROT-DEFIni card
- Geometry directives
- translat
- transform
- expansion
- Additional card related to a transformation
- ROTPRBIN card
- Tips for building a modular geometry

The ROT-DEFI card

ROT-DEFI card - Introduction

ROT-DEFI	Id: $\mathbf{0}$	Name:
	Azm:	$\Delta z:$
$\Delta x:$	$\Delta y:$	$\Delta z:$

The ROT-DEFI card defines roto-translations that can be applied to:

- Bodies:

To move and rotate geometry

- USRBIN and EVENTBIN cards (see ROTPRBIN card later) To move and rotate scorings
- LATTICE (not covered here)

The roto-translation places the body (or USRBIN etc) in the lab frame of reference.

ROT-DEFI card - Definition

Axis: Z vOT-DEFI	Id: 0	Name:
Polar:	Azm:	$\Delta z:$
$\Delta x:$	$\Delta y:$	$\Delta z:$

Axis: reference axis
Id: transformation index. If set to 0 , then Id is automatically assigned Name: transformation name. Optional, but recommended for easy referencing
Polar: polar angle of the rotation $\mathbf{R}_{\text {pol }}(0 \leq \vartheta \leq 180$ degrees) [clockwise]
Azm: azimuthal angle of the rotation $\mathbf{R}_{\mathrm{azm}}(-180 \leq \varphi \leq 180$ degrees) [clockwise]
$\Delta x, \Delta y, \Delta z: \quad$ vector components for the translation \mathbf{T}

When reference axis is Z : Clockwise rotation around Y with angle \uparrow

* More generally, with ref. axis X_{0} : Clockwise rotation around X_{2} with angle ϑ
" X_{1} goes towards X_{0} "

* Let (X0, X1, X2) be a right-handed orthogonal system in a 3D space. For example: (Z, X, Y), or (X, Y, Z), or (Y, Z, X).

ROT-DEFI card - Definition

\otimes ROT-DEFI	Axis: Z v	Id: 0	Name:
	Polar: ϑ value	Azm: φ value	
	$\Delta x: X_{\text {offset }}$ value	$\Delta y: Y_{\text {offset }}$ value	$\Delta z: Z_{\text {offset }}$ value

The ROT-DEFI card roto-translation is defined as:

For example, for a ROT-DEFI card with Axis = Z, the roto-translation is:
\(\left|$$
\begin{array}{c}X_{\text {new }} \\
Y_{\text {new }} \\
Z_{\text {new }}\end{array}
$$\right|=\left|$$
\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta\end{array}
$$\right|\left|$$
\begin{array}{ccc}\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1\end{array}
$$\right|\left|\begin{array}{c}X_{old}+X_{offset}

Y_{old}+Y_{offset}

Z_{old}+Z_{offset}\end{array}\right|\)| See |
| :--- |
| rotation around Y axis |
| in manual! |

It is preferable to define rotations through the azimuthal angle.

ROT-DEFI cards - "Chaining" / Inverse

- It is possible to use multiple ROT-DEFI cards to define a single transformation (compositon, or "chaining"):
- The Name (or Id) on the "chained" ROT-DEFI cards has to be the same.
- The transformations associated with the ROT-DEFI cards are applied from top to bottom.

- It is also possible to access the inverse of the transformation associated with a ROT-DEFI card.
- Just refer to the existing ROT-DEFI card with a minus sign ("-") before its name or Id number.
- Example use with ROTPRBIN card later in the lecture.

ROT-DEFI card - Example 1

Body located away from the origin of the coordinate system.

Initial state

ROT-DEFI card - Example 1

* ROT-DEFI	Axis: $\mathrm{Y} \mathbf{V}$	Id: 0	Name: Rot
	Polar:	Azm: 30	
	$\Delta \mathrm{x}$:	$\Delta \mathrm{y}$:	$\Delta \mathrm{z}$:

Rotation around Y axis with clockwise angle $\varphi=30^{\circ}$

ROT-DEFI card - Example 2

Body located away from the origin of the coordinate system.

Initial state

ROT-DEFI card - Example 2

Axis: $\mathrm{Y} \mathbf{~ R O T - D E F I ~}$	$\mathrm{Id}: \mathbf{0}$	Name: Rot	
Polar:	$A z m: 30$	$\Delta y:$	$\Delta z:-30$

Translation along Z axis

ROT-DEFI card - Example 2

A ROT-DEFI	Axis: Y v 0	Name: Rot
Polar:	Azm: 30	$\Delta z:-30$
	$\Delta x:$	$\Delta y:$

Rotation around Y axis with clockwise angle $\varphi=30^{\circ}$

The azimuthal rotation is always performed after
the translation defined in the same ROT-DEFI card.

ROT-DEFI card - Example 2

Translation along Z axis

The transformation defined in the $\mathbf{2}^{\text {nd }}$ ROT-DEFI card is applied after the roto-translation from the $1^{\text {st }}$ ROT-DEFI card.

Geometry directives

Geometry directives

- Special commands enclosing a body (or a list of bodies) definition:
\$start_xxx
\$end_xxx
- Where "xxx" stands for "translat", "transform" or "expansion"
- The directive is applied to the list of the bodies embedded between the starting and the ending directive lines

Directives in geometry: expansion

```
$start_expansion
$end_expansion
```

provides an expansion (or reduction)
of all body components (dimensions and placement) by a defined scaling factor (f), for all bodies included in the directive

```
\Delta $start_expansion f: 2
    \triangle TRC target x:0.0 y: -10.0 z: -2.0
                            Hx: 0.0
                            Rbase: 3.0
                            Hy: 0.0
                            Rappex: 2.0
b $end_expansion
```


Directives in geometry: translation

```
$start_translat
$end_translat
```

provides a coordinate translation ($\mathrm{dx}, \mathrm{dy}, \mathrm{dz}$) for all bodies embedded within the directive


```
\Delta $start_translat dx:0.0 dy: -10.0 dz: 5.0
```

```
    \Delta TRC target x:0.0
```

 \Delta TRC target x:0.0
 Hx: 0.0
 Hx: 0.0
 Rbase: 3.0
 dy: -10.0
 dy: -10.0
 dz: 5.0
dz: 5.0
y: 0.0
y: 0.0
z: -2.0
z: -2.0
Hy: 0.0
Hy: 0.0
Rappex: 2.0
\Delta \$end_translat

```

\section*{Directives in geometry: transform}

\author{
\$start_transform \\ \$end_transform
}
applies a roto-translation (pre-defined via ROT-DEFI) to all bodies embedded within the directive
```

\Delta \$start_transform Trans: Rot v
\Delta TRC target x:0.0 y:0.0 z: -2.0
Hx:0.0 Hy:0.0
Rbase: 3.0 Rappex: 2.0
\Delta \$end_transform

```
\begin{tabular}{|ccc|}
\hline Axis: \(\mathrm{X} \mathbf{~} \mathbf{~ R O T}\) & Id: 0 & Name: Rot \\
Polar: & Azm: -45 & \\
\(\Delta x:\) & \(\Delta y:\) & \(\Delta z: 10\)
\end{tabular}

\section*{Directives in geometry: warnings}
- \$start_expansion and \$start_translat are applied at intialisation \(\rightarrow\) no CPU penalty
\$start_transform is applied runtime \(\rightarrow\) some CPU penalty
- One can nest the different directives (at most one per type) but, no matter the input order, the adopted sequence is always the following:
```

\$start_transform
\$start translat
\$start_expansion
\$end_expansion
\$end_translat
\$end_transform

```

The ROTPRBIN card

\section*{The ROTPRBIN card}
- Consider the following problem:
- Pencil beam impinging on a cylindrical target
- Using the R-Ф-Z USRBIN scoring, for symmetry
- The beam and the target are rotated by 30 degrees around the y axis
- Solution: ROTPRBIN card
- Allows to apply a roto-translation transformation (ROT-DEFIni cards) to USRBIN or EVENTBIN scorings
- Important: In the ROTPRBIN card, the transformation which is specified is NOT the usual placement of the mesh in the lab frame of reference (i.e., the transformation: lab frame of reference \(\rightarrow\) mesh frame of reference), but its inverse.

\section*{The ROTPRBIN card}
- Example: Both the "target" solid and the "Fluence" mesh are rotated with "Rot":
\begin{tabular}{cccc|}
\hline\(\otimes\) ROT-DEFI & Axis: \(Y\) v & Id: 0 & Name: Rot \\
Polar: & Azm: 30 & \\
& \(\Delta x:\) & \(\Delta y:\) & \(\Delta z:\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{s \$start_transform Trans: Rot v} \\
\hline OCRC target & \(x: 0.0\) & \(y: 0.0\) & z: 0.0 \\
\hline & Hx: 0.0 & Hy: 0 & Hz: 2.0 \\
\hline & R: 0.5 & & \\
\hline \multicolumn{4}{|l|}{. \(>\) \$end_transform} \\
\hline
\end{tabular}

Solid placement: Call "Rot"


\section*{Building modular geometries}

\section*{Bounding box}

In the geometry lectures we saw that defining the "VOID" around objects can be quite difficult

Complex object


Complex "VOID"


Solution: the Bounding Box


Good practice: use a finite body (RPP, RCC, etc.) as a container for the whole object

\section*{Bounding box}


Only the Bounding Boxes have to be subtracted from the surrounding regions

\section*{Object location}
- It is always easier to build an object around the origin:
- It makes possible to use measurements from technical drawings directly
- The final object can be translated / rotated into its final position with geometry directives


\section*{Naming conventions}
- If multiple people are working on a complex geometry (multiple experimental halls and beamlines) it could happen that a body or region name is used twice, which leads to geometry errors
- Solution: agree on a naming convention, e.g. set prefixes for each object
- For example:
- \(1^{\text {st }}\) character: Beamline
- \(2^{\text {nd }}\) character: Object type
- \(3^{\text {rd }}\) character: Object number
- \(4^{\text {th }}-8^{\text {th }}\) character: Free

\section*{Summary}
- The ROT-DEFI card defines roto-translations
- Geometry directives (inside the geometry input) manipulate bodies
- \$start_translat \$start_transform \$start_expansion
\$end_translat
\$end_transform
\$end_expansion
- The ROTPRBIN card sets the correspondence between a roto-translation transformation and selected USRBIN and EVENTBIN scorings
- Tips on how to more easily build complex geometries
```

