

Exercise: advanced geometry

Beginner course – INTA, April 2024

Exercise objectives

- Practice with translations and rotations in Fluka
 - \$start_translat
 - \$start_transform
 - ROT-DEFI
 - ROTPRBIN

Geometry

- Start from the given input file
- Notice that all the geometry elements are there:

1 exp. hall, 1 exp. chamber, 1 collimator, 1 Image Plate detector (if you don't see them, look in the origin and on different views)

 Notice the use of bounding boxes (container bodies) in the definition of the elements

Geometry changes and scoring

- Translate exp. chamber bodies by $\Delta x=2500$ cm, $\Delta y=80$ cm, $\Delta z=2400$ cm
- Translate Image Plate bodies by $\Delta x=2550$ cm, $\Delta y=110$ cm, $\Delta z=2470$ cm
- Transform collimator bodies using two **ROT-DEFI** cards:
 - Rotation around Y-axis by 2° (inside an " #if / #endif " with a #define named "rotation" as condition)
 - 2. Translation by $\Delta x=2550$ cm, $\Delta y=110$ cm, $\Delta z=2450$ cm
- Score the energy deposition in the collimator on a grid
 - The **USRBIN** card is already included
 - A **ROTPRBIN** card needs to be associated to the scoring so that it appropriately matches the collimator in case of rotation

Run and look at results

- For the case with the rotation, run 5000 primaries (use cycles and spawns)
- Merge the results
- If necessary, adapt the already available layers in the Geometry editor
- Look at the particle fluences for the two cases:

(X,Z) plane over the whole geometry ("AllPart rot")

(X,Y) plane over the image plate ("AllPart IP rot")

- Look at the scoring of the energy deposition on the collimator
- In the geometry editor, try to add a layer ("Edep mesh") to visualise the rotated USRBIN mesh from the input file (i.e. just the mesh definition, not the simulation results)

Result: particle fluence with tilted collimator

Particle fluence with straight collimator

- Disable the collimator rotation using the preprocessor instruction
- Run with the collimator aligned
- Compare the results (impinging point on the Image Plate)

Result: particle fluence with straight collimator

Energy deposition

Without collimator rotation

▼ ★ Blue 🔹 🖌 🔶 🗲 Edep norot ▼ × 📕 🍨 ▼ 🔄 🧇 🝠 Edep mesh 🔻 ★ Red ▼ × ▲ 2570 2570 0.01 100000 10000 0.001 1000 2560 2560 100 0.0001 10 2550 2550 Laboration 12550 0,1 e-06 0,01 2540 0.001 1e-07 ExpChVac 0.0001 —1e-08 1e-05 2440 2450 2470 2450 2460 2470 ▼ × 🚺 🔅 ▼ 🔄 • 💿 🔻 **Edep rot** ▼ ★ Blue **Edep mesh** ▼ ★ Red **V** × 2570 2570 100000 0.01 10000 0.001 1000 2560 256 100 0.0001 10 2550 1e-05 2550 0.1 e-06 0.01 25400,001 1e-07 ExpChVac 0.0001 1e-05 2440 2450 2460 2470 2440 2450 2460 2470

With collimator rotation

Advanced geometry exercise

Flair Cheat Sheet

• You can **STOP** or **KILL** the run.

Х

 You can edit your input while the simulation runs.

!!! WARNING !!!

Mind the memory and CPU usage of your simulations!

- 1. Go to the *Run* tab, select *Runs* view.
- 2. Add new folder + Add new run.
- 3. Override the input run info:
 - Number of primaries
 - Title / Max. time per cycle / Seed / Exec.
- Override/Define variables.
- 5. Recommended: Increase number of spawns
- 6. Set number of cycles per spawn
 - Recommend at least 5 cycles in total.
 - num_cycles_tot = num_cycles_per_spawn * num_spawns

- 7. *Clean* run files after change to input or run settings.
- 8. Click *Start* to launch the simulations.
- 9. Monitor the progress. Click *Refresh* to force update.
- 10. After all cycles end:
 - Go to the **Data** (🜄) tab.
 - Click **Process** (<a>! §; to combine all cycles and create simulation data files.
 - You may need to refresh () and scan () if detectors are missing.

÷

Add 🔻

🚴 Run

Flair cheat sheet

