

Exercise: low-energy neutronics

Beginner course – INTA, April 2024

Exercise objectives

- Get familiar with FLUKA's pointwise treatment of low-energy neutrons and its advantages over a group-wise approach
- Witness how various neutron cross section features manifest in neutron fluences
- Master the plotting of histograms in logarithmic abscissas (lethargy units)
- Further practice with pre-processor directives
- Let's try to complete tasks 1-4, task 5 left as optional (examining crystal binding effects on the neutron fluence)

01 – Geometry (provided)

- Consists of three sphere bodies:
 - sph1, **R = 1 cm**
 - sph2, **R = 5 cm**
 - sph3, **R = 5 cm + 100 μm**

- ...and corresponding regions:
 - VAC: the inside of sph1, material: VACUUM
 - H2O: outside of sph1, inside sph2, material: WATER
 - LAYER: outside of sph2, inside sph3, material: VACUUM

01 – Source, preprocessor, LOW-PWXS, scoring (provided)

Source (isotropic 1 MeV neutron source):	BEAM ∆p: Flat ▼ Shape(X): Rectangular ▼ efine the beam position	Beam: Energy ▼ ∆p: ∆x:	E: =-1*MeV ∆φ: Isotropic ▼ Shape(Y): Rectangular ▼	Part: NEUTRON ▼ ∆y:
ficution source).	BEAMPOS	X: COSX:	y: cosy:	z: Type: POSITIVE ▼
 Preprocessor direct 	iVes: # #define # #define # #define # #define # #define # #define	pw 10B Cd graphite binding		
• LOW-PWXS condition	al on pw: 🔍 #if	pw▼ LOW-PWXS Ma db: ▼ IA	at: ▼ to Mat: .Z: S(α,β):	▼ Step: ▼ T:

• Scoring (n fluence in the water and n fluence from the external layer to the void:

ph1,4)**3)
łc

01 – Run, process, and plot

- Go to the Run tab and get ready to run the two already prepared runs:
 - run/pw with the pw directive active
 - run/gw with the pw directive inactive
- Both with 5 cycles, 25000 primaries per cycle
- Run! Process! Go to the Plot tab, and complete the placeholder plots:
 - "fluence_in_water": Plot the output from unit 21 of both runs in the same plot
 - "fluence_from_layer_to_void": Plot the output from unit 22 of both runs in the same plot
 - Set linewidth 2, Xmin=1e-14, Xmax=1e-3
 - Log scale Y
 - Log scale X: please take measures to avoid misrepresenting spectra (lethargy scale!)
 - Add appropriate labels for the X and Y axes
- For gnuplot gourmets:set xtics 10;set ytics 10;set grid; set form xy "10^{%L}"
- Can you explain the differences?

01 – GW vs. PW – Results

01 – GW vs. PW – Results

02 – Thin layer of ¹⁰B

- All subsequent runs are with pointwise interactions (pw active)
- Conditionally to the 10B preprocessor variable being active:
 - Assign BORON10 to the 100 μm Layer region
 - Note the MATERIAL card defining the BORON10 material (monoisotopic boron with ¹⁰B, not natural composition)
- Add a new run/10B with both pw and 10B variables active (all other variables off) No more group-wise runs from now on.
- Run! Process!
- Add the n fluences to the two plots
- What happened? Hint: slides of the first part of the lecture....

02 – Thin layer of ¹⁰B – Results

02 - Thin layer of ¹⁰B - Results

03 – Thin layer of Cd

- Conditionally to the Cd preprocessor variable being active:
 - Note the **MATERIAL** card defining the Cd material with natural composition
 - Assign CADMIUM to the 100 μm Layer region
- Add a new run/Cd with both pw and Cd variables active (all other variables off)
- Run! Process!
- Add the n fluences to the two plots. Maybe move the plot key to the bottom (too crowded)
- What happened? Hint: slides of the first part of the lecture....

03 – Thin layer of Cd – Results

03 – Thin layer of Cd – Results

04 – Thick layer of graphite

- Conditionally to the preprocessor variable graphite being active:
 - Change the thickness of LAYER to 5 cm #if graphite R(sph3) = 10 #else R(sph3) = 5*cm + 100*um #endif
 - Set the LAYER material to CARBON
- Add a new run/graphite run with pw and graphite active
- Run! Process!
- Add the n fluences to the two plots
- What happened?

04 – Thick layer of graphite - Results

Neutron fluence in H2O

04 – Thick layer of graphite - Results

05 – Binding effects (optional)

- Conditional to the preprocessor variable binding (as well as pw) being active:
 - Add a LOW-PWXS card to select graphite binding environment for CARBON
- Add run/graphitebinding with pw, graphite, and binding active
- Run! Process!
- Add the n fluences to the two plots (maybe untick the other plots to resolve better)
- What happened?

05 – Binding effects – Results

05 – Binding effects – Results

Flair Cheat Sheet

You can edit your input while the simulation runs.

WARNING !!! !!!

Mind the memory and CPU usage of your simulations!

- Go to the Run tab, select Runs view. 1.
- Add new folder + Add new run. 2.
- 3. Override the input run info:
 - Number of primaries
 - Title / Max. time per cycle / Seed / Exec.
- Override/Define variables. 4.
- Recommended: Increase number of spawns 5.
- 6. Set number of cycles per spawn
 - Recommend at least 5 cycles in total. •
 - num_cycles_tot = num_cycles_per_spawn * num_spawns

- Clean run files after change to input or run settings. 7.
- Click Start to launch the simulations. 8.
- Monitor the progress. Click *Refresh* to force update. 9.
- 10. After all cycles end:
 - Go to the **Data** () tab.
 - Click **Process** () to combine all cycles and create simulation data files.
 - You may need to refresh (\bigcirc) and scan (β) if detectors are missing.

х

🎄 Run

÷

Add 🔻

Flair cheat sheet

