

Exercise: source routine

First practice the "new" source routine

Beginner course – INTA, April 2024

Starting Flair project

Based on the basic template

Beam

Proton beam with 145 MeV energy

Geometry

- Target is removed
- Everything is in vacuum
- An ideal sphere (R=10cm) encloses the beam's starting location

Scoring

- **USRBIN** scoring of **ALL-PART** fluence To see where the beam goes
- USRBDX scoring of **PROTON** fluence and **ELECTRON** fluence crossing the sphere

Exercise 0 – Adding the source routine

In this exercise we will add the default "new" source routine to a Flair project and test if it is working correctly.

- 1. Start with the provided template project
- 2. Add the "*Ex_source_routine.f*" to the project [Complie] tab [Add] button
- 3. Give a name to the custom executable
- 4. Compile the custom executable [Build] button
- 5. Add an empty **SOURCE** card to the input
- 6. Verify that the custom executable is selected on the [Run] tab for the *run/source_routine* simulation
- 7. Run the simulation
- 8. Verify that the source routine is called:

Check the .log files for the debug output of the source routine

Exercise 1A – Beam divergence

Task:

- Set a flat beam divergence:
 - X (X-Z plane): 400 mrad

- 1. Open the source routine with your preferred text editor
- 2. Enable the lines related to Exercise 1A
- 3. Set the value of the divergence
 - Use double precision formatting for numbers,
 - The unit is [radians] in the source routine, while [mrad] on the **BEAM** card

Exercise 1A – Beam divergence

- 4. Recompile your custom executable
- 5. Rerun the simulation
- 6. Process the data
- 7. Verify the divergence on the [Geometry] tab Use the [Refresh] button
- 8. Plot the spectrum of the beam on the [Plot] tab

Exercise 1B – Beam divergence via SOURCE card

Task:

- Set a flat beam divergence:
 - Y (Y-Z plane): 200 mrad

- 1. Set the divergence in the **SOURCE** cards #1 field
 - The unit is [radians] in the source routine, while [mrad] on the **BEAM** card
- 2. Enable the lines related to Exercise 1B
- 3. Set the value of the divergence
 - Use the **WHASOU(1)** variable to access the #1 filed of the **SOURCE** card

Exercise 1B – Beam divergence via SOURCE card

- 4. Recompile your custom executable
- 5. Rerun the simulation
- 6. Process the data
- 7. Verify the divergence on the [Geometry] tab

Exercise 2 – Beam starting location

Task:

- Sample the starting location of the beam with built-in sampling functions
 - X coordinate: Uniform sampling between -5 and 5 cm
 - Y coordinate: Gaussian sampling around the origin with 4 cm FWHM

- 1. Enable the lines related to Exercise 2
- 2. Set the input variables of the sampling functions according to the task

Exercise 2 – Beam starting location

- 4. Recompile your custom executable
- 5. Rerun the simulation
- 6. Process the data
- 7. Verify the beam starting location on the [Geometry] tab (X-Y plane)

Exercise 3 – Beam energy

Task:

- Sample the beam energy using an external histogram file
 - Filename: "histogram.txt"
 - Units: "MeV"

- 1. Enable the lines related to Exercise 3
- 2. Set the input variables of the sampling function according to the task

Exercise 3 – Beam energy

- 4. Recompile your custom executable
- 5. Rerun the simulation
- 6. Process the data
- 7. Plot the spectrum of the beam on the [Plot] tab

18 Proton spectrum Eledମିଚନାspectrum 16 14 Fluence * Area [1/GeV] 12 10 8 2 0 0.02 0.12 0.14 0 0.04 0.06 0.08 0.1 Energy [GeV]

Source spectrum

Exercise: Source routine

Exercise 4 – Two simultaneous beam

Task:

• Set the primary particle to protons and electrons with a relative ratio of 1:3

- 1. Enable the lines related to Exercise 4
- 2. Set the total (!) ratio of the protons in the proton_ratio variable
- 3. Set the particle codes for electrons and protons
 - The list of particle code are available at https://flukafiles.web.cern.ch/manual/chapters/particle_and_material_codes/particles_codes.html

Exercise 4 – Two simultaneous beam

- 4. Recompile your custom executable
- 5. Rerun the simulation
- 6. Process the data
- 7. Plot the spectrum of the beam on the [Plot] tab

Flair Cheat Sheet

- 🐵 Remember!
- You can STOP or KILL the run.

Х

 You can edit your input while the simulation runs.

!!! WARNING !!!

Mind the memory and CPU usage of your simulations!

- 1. Go to the *Run* tab, select *Runs* view.
- 2. Add new folder + Add new run.
- 3. Override the input run info:
 - Number of primaries
 - Title / Max. time per cycle / Seed / Exec.
- 4. Override/Define variables.
- 5. Recommended: Increase number of spawns
- 6. Set number of cycles per spawn
 - Recommend at least 5 cycles in total.
 - num_cycles_tot = num_cycles_per_spawn * num_spawns

- 7. Clean run files after change to input or run settings.
- 8. Click **Start** to launch the simulations.
- 9. Monitor the progress. Click *Refresh* to force update.
- 10. After all cycles end:
 - Go to the **Data** (<a>[]) tab.
 - Click **Process** (<a>[]) to combine all cycles and create simulation data files.
 - You may need to refresh () and scan () if detectors are missing.

🎄 Run

