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Plus ça change, plus c'est la même chose

David Hitlin                               SLAC                               January12, 2018

• The first talk I gave at SLAC was in February, 1969, as part of my postdoc job interview 
• The subject was my thesis topic, the measurement of the sizes and shapes 

of nuclei with a permanent quadrupole deformation, using 
detailed analysis of the hyperfine structure in muonic X-ray 
spectra. This involved stopping low momentum negative 
muons (~103/s) from the decay of pions produced at the 
385 MeV Columbia Nevis synchrocyclotron in a variety of 
~100g targets, ranging from 152Sm to 238U

• This talk concerns searches for charged lepton flavor violation (henceforth CLFV) 
My involvement is with Mu2e at Fermilab, where we will stop large numbers (1010/s) of
low momentum negative muons from the decay of pions produced at the 
8 GeV Fermilab booster, stopped in an 27Al target (~168g) , searching for CLFV
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Charged Lepton Flavor Violation (CLFV)
•  CLFV denotes a transition involving µ, e or τ  lepton states that doesn’t 

conserve lepton family number, i.e., there are no neutrinos involved
• A CLF-conserving transition:
• A CLFV transition: µeγ , µ3e , µ N e N (µ e conversion), τlγ 

• Family number is not a symmetry of the Standard Model Lagrangian
• Quark family number is violated in weak decays (c.f. the CKM matrix)
• Neutrino oscillations are proof of the violation of neutral lepton flavor 

conservation (c.f. the PMNS matrix) , as well as evidence for BSM physics 
(e.g., see-saw mechanism)

• A natural question: “Is there also observable charged lepton flavor violation?”
• In the Standard Model (+ heavy neutrinos), CLFV is very small:

• CLFV searches are thus a clean probe of NP in the charged lepton sector
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Searching for CLFV
• CLFV has thus far been seen only in my garage 
• Many New Physics models predict CLFV processes to 

occur at an observable level
• There are many distinct experimental probes and a rich 

phenomenology, which has led to a robust experimental scene
• µeγ : most powerful limits: MEG-II at PSI: taking data
• µ N e N: muon to electron conversion: 
     three experiments upcoming: Mu2e, COMET (Fermilab, J-PARC)
• µ3e : Mu3e at PSI getting underway
• µ− N e+ N(Z-2): (Mu2e–II, COMET Phase 2?)
• µ + e−  µ− e+  (muonium→antimuonium)
• τ (e,µ)γ and many other τ decays (Belle II)
• H 

0 µ, e, τ +X (LHC, Mu2e, COMET)
• KL  µ e , B  µ e, K  µ e,  …  (LHCb, expts at J-PARC, CERN)

• The form of the CLFV Yukawa coupling matrix is model-dependent, 
    e.g., it could be PMNS-like or CKM-like

• Different theories predict distinct correlations between CLFV processes
• This round of experiments improves sensitivity by 1 to 4 orders of magnitude
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• Low energy probes: rare µ,τ and H 0 decays, 
µ e conversion, CLFV in meson decay

CLFV Processes
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Higgs decay: H  

0® τ µ  (also τ e, µ e)
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New Physics contributions to µ→ e conversion
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µNeN is sensitive to a wide variety of New Physics models, e.g.,
SUSY, 2HDM, Extra Dimensions, Leptoquarks, GUTs, LHT,…

Heavy Z'
Anomalous Z Coupling
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Theoretical guidance

• While the theory framework for interpreting CLFV results has been in place for 
decades, there have been several recent improvements:

• Full Dirac equation formalism for muon wavefunctions
• Use of EFT techniques
• Connection of EFT formalism to specific models (seesaw, leptoquark, ALP, …)
• Improved treatment of nuclear models, Z,A  dependence
• S. Davidson and B. Echenard, Eur.Phys.J. C 82 (2022)
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S. Davidson and B. Echenard, Eur.Phys.J. C 82 (2022)
M. Ardu, S. Davidson, S. Lavignac, e-Print: 2401.06214 [hep-ph]
W. Haxton, E. Rule, K. McElvain, M. Ramsey-Musolf, Phys.Rev.C107 (2023) 3, 03554
L. Borrel, DH, S. Middleton, e-print: 2401.15025 [hep-ph])
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EFT framework
Effective field theory (EFT) is now being  used to analyze reach and complementarity of µ → eγ,
µ → eee and µ N→ e N transitions in a systematic approach

 

At a given scale mµ, these processes can be described by the following effective Lagrangian,
assuming µΝ → eN interactions are similar for all light or all heavy targets (taken as Al and Au
for concreteness)*.

Dipole Contact µ → eee (scalar) Contact µ → eee (vector)

Contact µ → eee (vector) Contact µΝ → eN 
(light N)

Contact µΝ → eN 
(heavy N)

There are many operators, but only a few measurements. With a judicious choice of basis
vectors in the coefficient space one can define a four-dimensional subspace that is a good 
approximation to the CLFV rates we can measure.

Parameterize coefficient space with spherical coordinates:
and obtain constraints at the NP scale (ΑLFV) using RGEs.

{𝐶𝐶𝐷𝐷, 𝐶𝐶𝑆𝑆, 𝐶𝐶𝑉𝑉𝑅𝑅, 𝐶𝐶𝑉𝑉𝐿𝐿, 𝐶𝐶𝑙𝑙𝑖𝑖𝑔𝑔ℎ𝑡𝑡, 𝐶𝐶ℎ𝑒𝑒𝑎𝑎𝑣𝑣𝑦𝑦}

*See Haxton et al (2109.13503) for a discussion of the effect of nuclear structure on µ→ e conversion
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Reach, complementarity – EFT framework

𝜿𝜿𝑫𝑫 = cot(𝜽𝜽𝑫𝑫 − 𝝅𝝅/𝟐𝟐)

|κ D | << 1 ⇒ dipole dominant
|κ D| >> 1 ⇒  four-fermion dominant

Bertrand Echenard - Caltech p. 9

Reach and complementarity as a function of κ  D (remaining parameters representative)
                                                  

                                                 Current                                               Next round

κ  Dκ  D

S. Davidson and B. Echenard, Eur.Phys.J. C 82 (2022)
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θ D angle between the dipole and four-fermion type of operators
θ V angle between four-fermion operators on leptons or quarks
θ S angle between scalar and vector operators for µ→ eee
φ angle between “light: and “heavy” operators in µN→ eN conversion



κ  D

Reach, complementarity – EFT framework

Requirements:
1) measure all three modes and

multiple conversion targets
2) Improve sensitivity to the

decay modes to keep up
with the conversion mode

Reach and complementarity as a function of κ D or φ (remaining parameters representative)

Future

Bertrand Echenard - Caltech p. 10

S. Davidson and B. Echenard, Eur.Phys.J. C 82 (2022)
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Higgs CLFV
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PHYS.REV. D108,072004(2023)

< 2.0x10-3 @ 95% CL
         ATLAS 2023    13 TeV, 138 fb-1

< 1.8x10-3 @ 95% CL
        ATLAS   2023   13 TeV, 138 fb-1

< 4.7x10-5 @ 95% CL
        CMS 20203   13 TeV, 138 fb-1

JHEP 07,166(2023)

• CLFV Higgs couplings to τ (τ e, τ µ) can likely be best measured at the LHC
• µ e couplings are best measured in dedicated muon experiments
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JHEP 02 (2015) 144]A. Vicente & C.E. Yaguna – Scotogenic model, N1-N1 annihilation region

Model discrimination through correlations

Calibbi et al. 
arXiv:1408.0754 [hep-ph]
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B(µeγ)

M. Blanke, et al. JHEP 05 (2007) 013
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Blanke, Buras, Duling, Recksiegel & Tarantino, 
Acta Phys. Polon. B41, 657 (2010) 

Correlations in the                                    branching fractionsand τ µγ→ 

(τ →µγ) vs. (µ→eee) and CR(µ → e on Ti)
in an SO(10) Type II SUSY model
Calibbi, et al., JHEP 0912 057 (2009)
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Model discrimination through correlations
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CLFV Physics Reach

W. Altmannshofer, A.J.Buras, S.Gori, 
P.Paradisi, D.M.Straub 
Nucl.Phys.B 830, 17 (2010)
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Excellent sensitivity to many BSM models

Glossary
AC U(1) flavor symmetry

RVV2 Non-abelian

AKM SU(3)

δLL Left-handed CKM-like

FBMSSM Flavor-blind MSSM

LHT Littlest Higgs w T-Parity

RS Randall-Sundrum
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Chronology of µ and τ CLFV searches

n.b. µ→e conversion limits presented as conversion rates, not a quasi-“branching fractions” 
      (L. Borrel, DH, S. Middleton arXiv 2401.15025 [hep-ph])

https://arxiv.org/abs/2401.15025


Backgrounds: the name of the game
• At the sensitivities required to advance the state of the art in both τ decays and 

muon experiments, the primary issue is control of backgrounds in a high rate 
environment

• Irreducible backgrounds
• Accidental backgrounds

• Problematic backgrounds are specific to the type of experiment
• Handles on background control are

• Charged particle energy resolution
• Neutral energy resolution
• Time resolution
• Particle identification
• Prompt beam particle rejection
• Cosmic ray rejection

New muon experiments
• MEG II 
• Mu3e
• Mu2e, COMET
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New τ  decay experiments
Belle II
LHCb

Higgs decay experiments
ATLAS
CMS
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Belle II τ CLFV limits
 The target integrated luminosity of 50 ab-1

(~5x1010 ττ ) will be reached in ~2035
 The improvement in sensitivity to CLFV 

τ decays depends on whether or not a 
particular mode has backgrounds
 e.g., limits on B(τ→) improve as            if there is no background,

but more slowly, as ~            1/2, if there is background
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Limits on CLFV τ decays
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Muon experiments: CW vs pulsed beams
• µ®e conversion experiments 

use a pulsed µ−  beam, such as 
FNAL or J-PARC
• There are many prompt 

pion-induced backgrounds 
immediately after the 
proton pulse

• Use the muon/pion lifetime 
difference to reduce 
background 

CW operation optimizes the S/N Pulsed operation optimizes the S/N 
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• Muon decay experiments
µ®eγ, µ®eee use a continuous 
µ+ beam, such as the PSI 
synchrocyclotron surface 
muon beam

• The dominant backgrounds 
come from accidental 
coincidences of two decays
• background µ (rate) 2

• signal µ rate

FOM
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Muon experiments: CW vs pulsed beams
• µ®e conversion experiments 

use a pulsed µ−  beam, such as 
FNAL or J-PARC
• There are many prompt 

pion-induced backgrounds 
immediately after the 
proton pulse

• Use the muon/pion lifetime 
difference to reduce 
background 

DC optimizes the S/N Pulsed operation optimizes the S/N 
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• Muon decay experiments
µ®eγ, µ®eee use a continuous 
µ+ beam, such as the PSI 
synchrocyclotron surface 
muon beam

• The dominant backgrounds 
come from accidental 
coincidences of two decays
• background µ (rate) 2

• signal µ rate

FOM

Live Window
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µeγ  signal and backgrounds

CLFV signal            Radiative muon decay           Accidental background
correlated uncorrelated
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Events are described by five variables:  , , , ,e e e eE E tγ γ γ γθ φ
MEG at PSI
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MEG II – 2x resolution improvement
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Improved uniformity w/
VUV-sensitive 12x12mm SiPMs 

Intensity 7x107 µ/s

He:iC4H10 gas
Small stereo cells

30ps time resolution
w/multiple hits

Reduction of radiative background
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MEG II status
• The MEG II Upgrade improves the detector (2x improvements in resolution and efficiency) 

to aim for a 90% CL limit of O 6 x 10-14  in a three year run
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• Schedule
• Commissioning runs in 2017-2020
• Engineering run in Aug 2021

• Install full DAQ, electronics
• Full LXe electronics
• Degradation of MPPC PDE 

(Þlimit on µ stops/run), 
• Drift chamber conditioning 

to reduce corona discharge
• New chamber to be 

built by March 2023
• Physics runs start presently
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µ+e+e+e- Þ Mu3e at PSI

• Current limit: 1.0×10-12 (SINDRUM at PSI, 1988)

• Mu3e at will provide substantial improvement
• Uses a surface muon beam - πE5 beamline 
• Phase I  

• 2018 - 108 µ+/s
• Sensitivity 10-15

• Phase II  HIMB  109 µ+/s
• Sensitivity 10-16

Signal
 E = mμ
 Σpi=0
 Vertex

Background
Accidentals

Radiative decay
w internal conversion

+
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Mu3e detail
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Mu3e sensitivity
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Mu3e sensitivity
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µ to e conversion experiments

• The signal is a single 
mono-energetic electron

• If N = Al, Ee ~105 MeV
• Conversion electron energy 

depends on Z, due to
atomic binding energy

• Coherent nuclear recoil
• There are two experiments 

in various stages of preparation
• COMET Phase I and Phase II
• Mu2e

• Both face similar challenges, addressed in specific ways
• High rates to achieve required sensitivity
• Prompt and delayed beam-related backgrounds
• Cosmic ray backgrounds
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Origins trace to MELC and MECO proposals}
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Using calculated conversion rate
• Historical approach of normalizing the calculated and measured conversion rate 

(a coherent process) to mu capture (an incoherent process) introduces extraneous 
structure into Z dependence

• Solution: theorists publish the rate they calculate, experiments publish the rate they 
measure
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Czarnecki, Szafron

Decay-in-Orbit Shape

With µ -Al27 binding energy
and radiative corrections

Ee MeV

max

1 dN
E dE

David Hitlin                               DISCRETE 2021                               December 2, 2021 30



Mu2e
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Cosmic ray veto not shown

• The Mu2e sensitivity goal  2.6 x 10-17 demands a total of ~ 6x1017 stopped muons 
in a 3 year run of ~ 6x107 seconds total

• This requires a muon stopping rate of 1010/sec

• Experimental design
• Pulsed proton beam produce pions, which are captured in the backward direction
• Transport muons from pion decay, with momentum and sign selection
• Since electron backgrounds are at lower momentum than the sought conversion 

electrons, confine lower momentum particles to smaller helical radii in a solenoid 
and a provide hole in tracker and calorimeter for them to pass through

• Reject cosmic ray events
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Cosmic ray veto (four layers)

Covers as much of the transport and detector solenoids as possible
Nonetheless, timing properties of the calorimeter are
     required to achieve required cosmic ray rejection
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What happens during a microbunch ?

Straw Tracker Crystal CalorimeterStopping Target

Live Window
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Use of pulsed proton beam 
and  a delayed live gate allows 
suppression of  prompt 
backgrounds by many 
orders of magnitude 
Proton pulses must be narrow
Out-of-time protons must be 
suppressed by O (1010)

• Simulations encompass a full  ~1µs, including all the background overlays from the 
beam flash, µ capture products, neutrons, etc. and properly account for contributions 
from previous bunches. 
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What happens during a microbunch ?

• Simulations encompass a full  ~1µs, including all the background overlays from the 
beam flash, µ capture products, neutrons, etc. and properly account for contributions 
from previous bunches. 

Use of pulsed proton beam 
and  a delayed live gate allows 
suppression of  prompt 
backgrounds by many 
orders of magnitude 
Proton pulses must be narrow
Out-of-time protons must be 
suppressed by O (1010)

Live Window
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Straw TrackerStopping Target

(particles with hits within +/-40 ns of signal electron tmean)

signal e-
DIO e-

knock-out protons
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COMET Phase I

Stopping
Target
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SES    3 x 10-15

 or < 6 x 10-15 @ 90% CL
for 150 days at 3.2 kW
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COMET Phase-II (not approved)

SES (1.0 – 2.6) x 10-17

for 2 x 107 s at 56kW

36
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The experiments after the next experiments
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Positron
spectrometer

Active converter
pair spectrometer

• 𝜇𝜇+ → 𝑒𝑒+γ
• Improve time and spatial resolution 

– convert the γ (costs factor of 100 in efficiency)
• 𝜇𝜇+ → 𝑒𝑒+𝑒𝑒−𝑒𝑒+

• Improve time resolution
• 𝜇𝜇−𝑁𝑁 → 𝑒𝑒+𝑁𝑁

• PIP-II: 10x 𝜇𝜇− stops:  SES 3x10-18

• New production target
• Thinner tracker, faster calorimeter
• If CLFV found in Al, use higher Z target (Ti, V, Au) to study coupling
• If not found, improve sensitivity on Al

• PRISM (J-PARC), AMF (Fermilab)
• FFAG storage ring to produce an even

more intense, monochromatic, muon 
beam (+ or -) with no pion contamination

• 𝜇𝜇−𝑁𝑁 → 𝑒𝑒+𝑁𝑁 ∗  ∆L=2
• Muonium-antimuonium 𝜇𝜇−e+  →  𝜇𝜇+e−



Conclusions
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• Searches for charged lepton flavor violation provide 
the basis for a robust program of BSM investigations that
have probe a wide variety of models

• Near-term experiments are running or coming online
and upgrades and/or new facilities promise meaningful
improvements in sensitivity

• The highest sensitivity is in general achievable with muons:
• 𝜇𝜇+ → 𝑒𝑒+γ
• 𝜇𝜇+ → 𝑒𝑒+𝑒𝑒−𝑒𝑒+
• 𝜇𝜇−𝑁𝑁 → 𝑒𝑒+𝑁𝑁
• 𝜇𝜇−𝑁𝑁 → 𝑒𝑒+𝑁𝑁 ∗  ∆L=2
• 𝜇𝜇−e+  →  𝜇𝜇+e−

• However, τ  CLFV decays access unique otherwise 
inaccessible BSM couplings
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