Searches for Charged Lepton Flavor Violation

A (mostly) Experimental Review

Observable

David Hitlin Caltech *BABAR* Symposium March 8, 2024

arXiv:1910.11775CERN-ESU-004

Plus ça change, plus c'est la même chose

- The first talk I gave at SLAC was in February, 1969, as part of my postdoc job interview
- The subject was my thesis topic, the measurement of the sizes and shapes of nuclei with a permanent quadrupole deformation, using detailed analysis of the hyperfine structure in muonic X-ray spectra. This involved stopping low momentum negative muons (~10³/s) from the decay of pions produced at the 385 MeV Columbia Nevis synchrocyclotron in a variety of ~100g targets, ranging from ¹⁵²Sm to ²³⁸U

 This talk concerns searches for charged lepton flavor violation (henceforth CLFV) My involvement is with Mu2e at Fermilab, where we will stop large numbers (10¹⁰/s) of low momentum negative muons from the decay of pions produced at the 8 GeV Fermilab booster, stopped in an ²⁷Al target (~168g), searching for CLFV

Charged Lepton Flavor Violation (CLFV)

- CLFV denotes a transition involving μ , *e* or τ lepton states that doesn't conserve lepton family number, *i.e.*, there are no neutrinos involved
 - A CLF-conserving transition: $\mu^- \rightarrow e^- \nu_e \overline{\nu}_\mu$
 - A CLFV transition: $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu N \rightarrow eN$ ($\mu \rightarrow e$ conversion), $\tau \rightarrow l\gamma$
- Family number is not a symmetry of the Standard Model Lagrangian
 - Quark family number is violated in weak decays (*c.f.* the CKM matrix)
 - Neutrino oscillations are proof of the violation of neutral lepton flavor conservation (*c.f.* the PMNS matrix), as well as evidence for BSM physics (*e.g.*, see-saw mechanism)
- A natural question: "Is there also **observable charged lepton flavor violation**?"

$$\frac{\mu}{W} \underbrace{N}_{W} \underbrace{N}_{W} e}{M} \qquad \mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^{*} U_{ei} \frac{\Delta m_{1i}^{2}}{M_{W}^{2}} \right|^{2} < 10^{-54}$$

CLFV searches are thus a clean probe of NP in the charged lepton sector

ymposium March 8, 2024

Searching for CLFV

- CLFV has thus far been seen only in my garage
- Many New Physics models predict CLFV processes to occur at an observable level
- There are many distinct experimental probes and a rich phenomenology, which has led to a robust experimental scene
 - $\mu \rightarrow e\gamma$: most powerful limits: MEG-II at PSI: taking data
 - $\mu N \rightarrow e N$: muon to electron conversion: $\mu^- + N(A,Z) \rightarrow e^- + N(A,Z)$ three experiments upcoming: Mu2e, COMET (Fermilab, J-PARC)
 - $\mu \rightarrow 3e$: Mu3e at PSI getting underway
 - $\mu^- N \rightarrow e^+ N(Z-2)$: (Mu2e–II, COMET Phase 2?)
 - $\mu^+ e^- \rightarrow \mu^- e^+$ (muonium \rightarrow antimuonium)
 - $\tau \rightarrow (e,\mu)\gamma$ and many other τ decays (Belle II)
 - $H^0 \rightarrow \mu, e, \tau + X$ (LHC, Mu2e, COMET)
 - $K_{\rm L} \rightarrow \mu e$, $B \rightarrow \mu e$, $K \rightarrow \mu e$, ... (LHCb, expts at J-PARC, CERN)
 - The form of the CLFV Yukawa coupling matrix is model-dependent,
 - e.g., it could be PMNS-like or CKM-like
 - Different theories predict **distinct correlations** between CLFV processes
 - This round of experiments improves sensitivity by 1 to 4 orders of magnitude

CLFV Processes

New Physics contributions to $\mu \rightarrow e$ conversion

 $\mu N \rightarrow eN$ is sensitive to a wide variety of New Physics models, *e.g.*, SUSY, 2HDM, Extra Dimensions, Leptoquarks, GUTs, LHT,...

David Hitlin

Theoretical guidance

- While the theory framework for interpreting CLFV results has been in place for decades, there have been several recent improvements:
 - Full Dirac equation formalism for muon wavefunctions
 - Use of EFT techniques
 - Connection of EFT formalism to specific models (seesaw, leptoquark, ALP, ...)
 - Improved treatment of nuclear models, Z,A dependence

S. Davidson and B. Echenard, *Eur.Phys.J.* C 82 (2022)

M. Ardu, S. Davidson, S. Lavignac, e-Print: <u>2401.06214</u> [hep-ph]

W. Haxton, E. Rule, K. McElvain, M. Ramsey-Musolf, Phys. Rev. C107 (2023) 3, 03554

L. Borrel, DH, S. Middleton, e-print: 2401.15025 [hep-ph])

EFT framework

Effective field theory (EFT) is now being used to analyze reach and complementarity of $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$ and $\mu N \rightarrow e N$ transitions in a systematic approach

At a given scale m_{μ} , these processes can be described by the following effective Lagrangian, assuming $\mu N \rightarrow eN$ interactions are similar for all light or all heavy targets (taken as AI and Au for concreteness)*.

There are many operators, but only a few measurements. With a judicious choice of basis vectors in the coefficient space one can define a four-dimensional subspace that is a good approximation to the CLFV rates we can measure.

Parameterize coefficient space with spherical coordinates: and obtain constraints at the NP scale (A_{LFV}) using RGEs. $|\mathcal{C}|^2 = 1$, $\mathcal{C}_D = \vec{\mathcal{C}}\hat{e}_D = |\hat{e}_D|\cos(\theta_D)$,....

*See Haxton *et al* (2109.13503) for a discussion of the effect of nuclear structure on $\mu \rightarrow e$ conversion

Reach, complementarity – EFT framework

Reach and complementarity as a function of $\kappa_{\rm D}$ (remaining parameters representative)

S. Davidson and B. Echenard, *Eur.Phys.J.* C 82 (2022)

Next round

angle between "light: and "heavy" operators in $\mu N \rightarrow eN$ conversion

 $|\kappa_{\rm D}| >> 1 \Rightarrow$ four-fermion dominant

Current

Reach, complementarity – EFT framework

Reach and complementarity as a function of $\kappa_{\rm D}$ or ϕ (remaining parameters representative) S. Davidson and B. Echenard, *Eur.Phys.J.* C 82 (2022)

David Hitlin

Higgs CLFV

- CLFV Higgs couplings to τ (τe , $\tau \mu$) can likely be best measured at the LHC
- μe couplings are best measured in dedicated muon experiments

Model discrimination through correlations

Model discrimination through correlations

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	
$\frac{Br(\mu^- \to e^- e^+ e^-)}{Br(\mu \to e\gamma)}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau \rightarrow e \gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	
$\frac{Br(\tau^- \to \mu^- \mu^+ \mu^-)}{Br(\tau \to \mu \gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	$0.06 \dots 0.1$	
$\frac{Br(\tau^- \to e^- \mu^+ \mu^-)}{Br(\tau \to e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04	
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$	
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau^- \rightarrow e^- \mu^+ \mu^-)}$	0.82.0	~ 5	0.30.5	
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau^- \rightarrow \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	
$\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e\gamma)}$	$10^{-3} \dots 10^{2}$	$\sim 5\cdot 10^{-3}$	0.080.15	

$\tau \rightarrow \mu \gamma$ and $\ell \ell \ell$

Blanke, Buras, Duling, Recksiegel & Tarantino, Acta Phys. Polon. B41, 657 (2010)

 $(\tau \rightarrow \mu \gamma)$ vs. $\mathcal{B}(\mu \rightarrow eee)$ and $CR(\mu \rightarrow e \text{ on } Ti)$ in an SO(10) Type II SUSY model Calibbi, et al., JHEP 0912 057 (2009)

David Hitlin

BABAR 30th Anniversary Symposium

March 8, 2024

13

CLFV Physics Reach

++++ = Discovery Sensitivity

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{ m CP}\left(B ightarrow X_s\gamma ight)$	*	*	*	***	***	*	?
$A_{7,8}(B ightarrow K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B o K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s ightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L o \pi^0 u ar u$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub *Nucl.Phys.B* 830, 17 (2010)

Glossary			
AC	U(1) flavor symmetry		
RVV2	Non-abelian		
AKM	SU(3)		
δLL	Left-handed CKM-like		
FBMSSM	Flavor-blind MSSM		
LHT	Littlest Higgs w T-Parity		
RS	Randall-Sundrum		

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Excellent sensitivity to many BSM models

David Hitlin

Chronology of μ and τ CLFV searches

n.b. $\mu \rightarrow e$ conversion limits presented as conversion rates, not a quasi-"branching fractions" (L. Borrel, DH, S. Middleton arXiv 2401.15025 [hep-ph]) altech

David Hitlin BABAR 30th Anniversary Symposium March 8, 2024

Backgrounds: the name of the game

- - Irreducible backgrounds
 - Accidental backgrounds
- Problematic backgrounds are specific to the type of experiment
- Handles on background control are
 - Charged particle energy resolution
 - Neutral energy resolution
 - Time resolution
 - Particle identification
 - Prompt beam particle rejection
 - Cosmic ray rejection

New muon experiments

- MEG II
- Mu3e
- Mu2e, COMET

Belle II τ CLFV limits

- The target integrated luminosity of 50 ab⁻¹ (~5x10¹⁰ ττ) will be reached in ~2035
- The improvement in sensitivity to CLFV

 τ decays depends on whether or not a
 particular mode has backgrounds

- *e.g.*, limits on $\mathcal{B}(\tau \rightarrow \ell \ell \ell)$ improve as $1/\int \mathcal{L} dt$ if there is no background, but more slowly, as ~ $1/\int \mathcal{L} dt$ ^{1/2}, if there is background

Limits on CLFV τ decays

90% CL upper limits on τ LFV decays

Muon experiments: CW vs pulsed beams

- Muon decay experiments
 μ→eγ, μ→eee use a continuous
 μ⁺ beam, such as the PSI
 synchrocyclotron surface
 muon beam
- The dominant backgrounds come from accidental coincidences of two decays
 - background \propto (rate)²
 - signal \propto rate

David Hitlin

- $\mu \rightarrow e$ conversion experiments use a pulsed μ^- beam, such as FNAL or J-PARC
 - There are many prompt pion-induced backgrounds immediately after the proton pulse
 - Use the muon/pion lifetime difference to reduce background

time after beam pulse

Muon experiments: CW vs pulsed beams

- Muon decay experiments
 μ→eγ, μ→eee use a continuous
 μ⁺ beam, such as the PSI
 synchrocyclotron surface
 muon beam
- The dominant backgrounds

- $\mu \rightarrow e$ conversion experiments use a pulsed μ^- beam, such as FNAL or J-PARC
 - There are many prompt pion-induced backgrounds immediately after the

$\mu \rightarrow e\gamma$ signal and backgrounds

CLFV signal Radiative muon decay $\propto R_{\mu}$

Accidental background $\propto R_{\mu}$

Events are described by five variables: $E_{\nu}, E_{e}, t_{e\nu}, \theta_{e\nu}, \phi_{e\nu}$ **MEG at PSI**

MEG II – 2x resolution improvement

MEG II status

- The MEG II Upgrade improves the detector (2x improvements in resolution and efficiency) to aim for a 90% CL limit of O 6 x 10⁻¹⁴ in a three year run
- Schedule
 - Commissioning runs in 2017-2020
 - Engineering run in Aug 2021
 - Install full DAQ, electronics
 - Full LXe electronics
 - Degradation of MPPC PDE $(\Rightarrow$ limit on μ stops/run),
 - Drift chamber conditioning to reduce corona discharge
 - New chamber to be built by March 2023

Possible operation scenarios for physics run

David Hitlin

Mu3e detail

Mu3e sensitivity

David Hitlin

Mu3e sensitivity

μ to e conversion experiments

- The signal is a single mono-energetic electron
- If *N* = AI, *E_e* ~105 MeV
 - Conversion electron energy depends on Z, due to atomic binding energy
- Coherent nuclear recoil
- There are two experiments in various stages of preparation
 - COMET Phase I and Phase II
 - Mu2e
 - Both face similar challenges, addressed in specific ways
 - · High rates to achieve required sensitivity
 - Prompt and delayed beam-related backgrounds
 - Cosmic ray backgrounds

Using calculated conversion rate

 Historical approach of normalizing the calculated and measured conversion rate (a coherent process) to mu capture (an incoherent process) introduces extraneous structure into Z dependence

• Solution: theorists publish the rate they calculate, experiments publish the rate they measure

Decay-in-Orbit Shape

Czarnecki, Szafron

David Hitlin

DISCRETE 2021

30

Mu₂e

This requires a muon stopping rate of 10¹⁰/sec

- Experimental design
 - Pulsed proton beam produce pions, which are captured in the backward direction
 - Transport muons from pion decay, with momentum and sign selection ٠
 - Since electron backgrounds are at lower momentum than the sought conversion ٠ electrons, confine lower momentum particles to smaller helical radii in a solenoid and a provide hole in tracker and calorimeter for them to pass through
 - Reject cosmic ray events

Cosmic ray veto (four layers)

What happens during a microbunch ?

Muze

from previous bunches.

David Hitlin

What happens during a microbunch ?

Simulations encompass a full ~1 μ s, including all the background overlays from the beam flash, μ capture products, neutrons, *etc*. and properly account for contributions from previous bunches.

David Hitlin

COMET Phase I

SES 3 x 10⁻¹⁵ or < 6 x 10⁻¹⁵ @ 90% CL for 150 days at 3.2 kW

COMET Phase-II (not approved)

tech

The experiments after the next experiments

- $\mu^+ \rightarrow e^+ \gamma$
 - Improve time and spatial resolution

 convert the γ (costs factor of 100 in efficiency)
- $\mu^+ \rightarrow e^+ e^- e^+$
 - Improve time resolution
- $\mu^- N \rightarrow e^+ N$
 - PIP-II: 10x μ^- stops: SES 3x10⁻¹⁸
 - New production target
 - Thinner tracker, faster calorimeter
 - If CLFV found in AI, use higher Z target (Ti, V, Au) to study coupling
 - If not found, improve sensitivity on AI
 - PRISM (J-PARC), AMF (Fermilab)
 - FFAG storage ring to produce an even more intense, monochromatic, muon beam (+ or -) with no pion contamination
- $\mu^- N \rightarrow e^+ N^* \Delta L=2$
- Muonium-antimuonium $\mu^- e^+ \rightarrow \mu^+ e^-$

Conclusions

- Searches for charged lepton flavor violation provide the basis for a robust program of BSM investigations that have probe a wide variety of models
- Near-term experiments are running or coming online and upgrades and/or new facilities promise meaningful improvements in sensitivity
- The highest sensitivity is in general achievable with muons:
 - $\mu^+ \rightarrow e^+ \gamma$ • $\mu^+ \rightarrow e^+ e^- e^+$
 - $\mu^- N \rightarrow e^+ N$
 - $\mu^- N \rightarrow e^+ N^* \Delta L=2$
 - $\mu^-e^+ \rightarrow \mu^+e^-$
- However, τ CLFV decays access unique otherwise inaccessible BSM couplings