

A THEORY OF EXOTIC HADRONS?

AD POLOSA, SAPIENZA UNIVERSITY OF ROME

In collaboration with A. Esposito, D. Germani, A. Glioti, B. Grinstein, L. Maiani, R. Rattazzi

BABAR AND EXOTIC SPECTROSCOPY

(From a longer list of contributions)

- $e^+e^- \rightarrow \gamma_{\text{ISR}} (\pi^+\pi^- J/\psi)$ found a vector at M = 4.26 GeV and $\Gamma = 70 \pm 20$ MeV. [PRL 95 (2005) 142001 cit. 1013]
- $B^- \to K^-X(3872) \to K^-(\pi^+\pi^-J/\psi)$ finding the mass $M = 3873.4 \pm 1.4$ MeV. [PRD 71 (2005) 071103 cit. 748]
- $X(3872) \rightarrow \psi(2S)\gamma$ and $X(3872) \rightarrow \psi(1S)\gamma$ presenting for the first time $\mathscr{R} = \mathscr{B}(2S)/\mathscr{B}(1S) = 3.4 \pm 1.4$ [PRL 102 (2009) 132001 cit. 312]

 $B^+ \to K^+ (\pi^+ \pi^- \pi^0 J/\psi)$ but needed $\ell = 1$ giving a preference to $J^P = 2^-$ for the X.

X→ωJ/ψ [PRD 82 (2010) 011101 cit. 302]

THE X(3872) IDENTIKIT TODAY

 $X^0(3872)$ $J^{PC} = 1^{++}$

$$\begin{split} M &= 3871.65 \pm 0.06 \text{ MeV} \simeq M_D + M_{D^*} \\ M &= 3871.65 \pm 0.06 \text{ MeV} \simeq M_{J/\psi} + M_\rho \end{split}$$

 $\Gamma = 1.19 \pm 0.21$ MeV

$\pi^+\pi^- J/\psi$	$\mathscr{B} = 3.8 \pm 1.2 \%$
$\omega J/\pi$	$\mathscr{B} = 4.3 \pm 2.1 \%$
$D^0 ar{D}^0 \pi^0$	$\mathscr{B} = 49^{+18}_{-20} \%$
$D^0 ar{D}^{*0}$	$\mathscr{B} = 37 \pm 9\%$
$\pi^0 \chi_{c1}(1P)$	$\mathscr{B} = 3.4 \pm 1.6 \%$

Central mass values and widths in MeV

X(3872)	$Z_c^{0\pm}(3900)$	$Z_c^{0\pm}(4020)$	$Z_b^{0\pm}(10610)$	$Z_b^{0\pm}(10650)$
$\Gamma = 1$	$\Gamma = 28$	$\Gamma = 13$	$\Gamma = 18.4$	$\Gamma = 11.5$
$D^0 ar{D}^{*0}$	$D^0ar{D}^{*0\pm}$	$D^{*0}ar{D}^{*0\pm}$	$B^0ar{B}^{*0\pm}$	$B^{*0}ar{B}^{*0\pm}$
$\delta pprox 0$	+15	+10, +7	+3	+2

(MeV)

THE RADIATIVE DECAYS OF X(3872)

$$\mathscr{R} \equiv \frac{\mathscr{B}(X \to \gamma \,\psi(2S))}{\mathscr{B}(X \to \gamma \,\psi(1S))} \simeq 2.6 \pm 0.6 \quad (\text{PDG Ave.})$$

The phase space ratio $\Phi(2S)/\Phi(1S) \simeq 0.26$ would favor a small \mathscr{R} .

We distinguish between a **compact** $c\bar{c}q\bar{q}$ and a **molecular** $D\bar{D}^*$ interpretation.

We find that \mathscr{R} predicted in the compact case is (at least) 30 times larger, $\mathscr{R} \gtrsim 1$, than that predicted for a molecule, $\simeq 0.04$.

B. Grinstein, L. Maiani, A.D.P., 2401.11623

The universal wavefunction in the molecular picture amplifies small distances enhancing the J/ψ wrt $\psi(2S)$.

Reduced wavefunctions $u(r) = r R_{n0}(r)$

B. Grinstein, L. Maiani, A.D.P., 2401.11623

SCATTERING AMPLITUDE POLES

Motion of a particle m in V(r) which vanishes at infinity more rapidly than $\exp(-c r)$: there are no singularities of the scattering amplitude as a function of E on the **physical sheet** other than *simple poles* in correspondence of discrete energy levels (bound states) say E = -B. It is found that **near the point** E = -B the principal term in f has the form

$$f = -\frac{A_0^2}{2m}\frac{1}{E+B}$$

with the **normalized** reduced wf given by

$$\chi = A_0 \exp(-r\sqrt{2mB})$$

So the residue of the scattering amplitude f at some discrete level is lpha

$$A_0 = (4 \cdot 2mB)^{1/4}$$

THE RADIATIVE DECAYS OF X(3872)

We find in any case $\mathscr{R}_{\text{compact}} > \mathscr{R}_{\text{mol.}}$ with $\mathscr{R}_{\text{compact}} \gtrsim 1$

 $R_0 = 1/\sqrt{2mB}$

B. Grinstein, L. Maiani, A.D.P., to appear soon.

How to overturn the molecule situation: \mathscr{R} is a rapidly increasing function of the size of $D^{(*)}$ (here $\Psi_{\text{mol.}}$ is used).

THE RADIATIVE DECAYS OF X(3872)

On the other hand the diquark in the compact tetraquarks tends to be larger than a D or a \overline{D}^* meson since the binding force in the diquark is weaker! (here $\Psi_{BO}(r)$ is used).

B. Grinstein, L. Maiani, A.D.P., 2401.11623

X(3872) PROMPT PRODUCTION IN $pp(\bar{p})$ COLLISIONS

About 300 times smaller than observed (CDF), same in CMS, ATLAS.

Braaten and Artoisenet, PRD81103 (2010) 114018

Bignamini, Grinstein, Piccinini, ADP, Sabelli, PRL103 (2009) 162001

THE X BY A $c\bar{c}$ CORE

Esposito, Guerrieri, Maiani, Piccinini, Pilloni, ADP, Riquer, Phys. Rev. D 92 (2015) 3, 034028

LANDAU ARGUMENT (BOUND STATES IN QFT)

Consider the $D\bar{D}^*$ scattering. The *X* molecule (a multiparticle intermediate state) couples to the asymptotic 2-particle states $|\alpha\rangle$, $|\beta\rangle = |D\bar{D}^*\rangle$ with some coupling g – the coupling to its constituents. How does g depend on B?

$$f(\alpha \to \beta) = \frac{1}{8\pi E} g^2 \Delta'(p) = \frac{1}{8\pi E} \frac{g^2}{p^2 + m_X^2 - i\epsilon}$$

It is like using the complete propagator (for bare fields) in the Källén-Lehmann representation with

$$\sigma(\mu^2) = \delta(\mu^2 - (m_D + m_{D^*})^2) \simeq \delta(\mu^2 - m_X^2)$$

due to the exceptional fact that $m_X \simeq (m_D + m_{D^*})$.

L.D. Landau, JETP 39, 1865 (1960)

Introduce the coupling to X

Neglecting terms of order B^2 and E^2 ($E = k^2/2m$) one finds in the case of the X

$$f(\alpha \to \beta) = \frac{1}{8\pi m_X} \frac{g^2}{(p_D + p_{D^*})^2 + m_X^2 - i\epsilon} \simeq -\frac{1}{16\pi m_X^2} \frac{g^2}{E + B}$$

ADP Phys. Lett. B746, 248 (2015)

In the presence of a shallow bound state the polar amplitude gives a relation between the coupling g and the B as follows

$$f(\alpha \rightarrow \beta) = -\frac{1}{16\pi m_X^2} \frac{(8mm_X^2 g_0^2)}{E+B} = -\sqrt{\frac{2B}{m}} \frac{1}{E+B}$$
$$\Rightarrow g_0^2 = \frac{2\pi}{m} \sqrt{\frac{2B}{m}}$$

This very same formula was found by Weinberg, rescaled by the (1 - Z) factor – as from solving Lehman identity with $Z \neq 0$.

$$g_Z^2 = \frac{2\pi}{m} \sqrt{\frac{2B}{m}} (1-Z)$$

WEINBERG ARGUMENT

Weinberg does not go through the K.L. argument but rather uses a NRQM approach in which the Hilbert space is enlarged to include $\mathfrak X$

$$|\langle D\bar{D}^* | V | X \rangle|^2 = \frac{2\pi}{m} \sqrt{\frac{2B}{m}} (1-Z)$$

and
$$|X\rangle = \sqrt{Z} |\mathfrak{X}\rangle + \int_{k} C_{k} \frac{|D\bar{D}^{*}(k)\rangle}{|\alpha\rangle}$$

The NR quantum mechanics treatment of Weinberg suggests the idea of a mixing between compact and molecular/continuum which generates conflicting interpretations. Are there two X mixed states (compact + shallow bound state)?

S. Weinberg Phys. Rev. 137, B672 (1965)

EFFECTIVE RANGE EXPANSION

The NR low energy scattering formula is

$$\frac{A_0^2}{2m} = \frac{1}{mR_0} = \sqrt{\frac{2B}{m}} \qquad R_0 = \frac{1}{\sqrt{2mB}}$$

It corresponds to setting $r_0 = 0$ in the effective range expansion. Keeping a finite r_0 gives instead

$$\frac{A_0^2}{2m} = \frac{1}{m(R_0 - r_0)}$$
$$\frac{1}{\frac{1}{mR_0}(1 - Z)} = \frac{1}{\frac{1}{m(R_0 - r_0)}} \Rightarrow r_0 = -\frac{Z}{1 - Z}R_0$$

$r_0 \text{ AND } a \text{ FORMULAE}$

Solving the previous formula for r_0

$$r_0 = -\frac{Z}{1-Z}R_0 + O\left(\frac{1}{\Lambda}\right)$$

$$\alpha$$
 π β

$$R_0 = \frac{1}{\varkappa} = \frac{1}{\sqrt{2mB}}$$

The (positive!) scattering length is obtained using the expression of r_0 given above into the pole condition $\left(-\varkappa_0 + \frac{1}{2}r_0k^2 - ik\right)_{k=in} = 0$

$$a = \frac{2(1-Z)}{2-Z}R_0 + O\left(\frac{1}{\Lambda}\right)$$

(scattering length > 0)

S. Weinberg Phys. Rev. 137, B672 (1965)

A negative r_0 implies a finite Z, provided that $1/\Lambda$ corrections are not negative and sizeable. In QFT the meaning of Z is

$$\langle 0 | \Phi(0) | k \rangle = \frac{N}{\sqrt{2E}} \qquad E = \sqrt{k^2 + m^2}$$
$$Z = |N|^2$$

This number has no probabilistic interpretation: it is not the probabilistic weight of the compact component to be compared to the one of the bound state component.

THE Λ SCALE

In the case of the deuteron d

$$\Lambda = m_{\pi} \Rightarrow \frac{1}{\Lambda} \simeq 1 \text{ fm}$$

because the pion can be integrated out given that

$$m_n - m_p \ll m_\pi$$

In the case of the X, pion interactions between D and $ar{D}^{st}$ (u-channel)

$$\Lambda^{2} = m_{\pi}^{2} - (\underbrace{m_{D^{*}} - m_{D}})^{2} \simeq (44 \text{ MeV})^{2}$$

$$\underbrace{q_{0}^{2}}_{q_{0}^{2}}$$
giving
$$\frac{1}{\Lambda} \simeq 4.5 \text{ fm}$$

THE SIGN OF r_0 IN A ATTRACTIVE V

Scattering in the presence of shallow bound states generated by *purely attractive potentials* in NRQM are characterized by

$r_0 \ge 0$

even if there is a repulsive core, but in a very narrow region around the origin. Therefore the 1 fm estimated above is +1 fm

$$r_0 \simeq -\frac{Z}{1-Z}R_0 + 1 \text{ fm} = r_0^{\text{exp.}} = +1.74 \text{ fm}$$

So we conclude that $Z \simeq 0$. The deuteron is a molecule! Only a "large" (wrt 1 fm) and negative r_0 would have been the token of the elementary deuteron.

Esposito, Maiani, Pilloni, ADP, Riquer, <u>2108.11413</u>, *Phys. Rev. D*105 (2022) 3, L031503

DATA ON X: LHCB ANALYSIS

arXiv:2005.13419

For small kinetic energies – Flatté parametrization for the coupled channel decay $X \to D^0 \overline{D}^{*0}$ and $X \to D^+ \overline{D}^{*-}$.

$$\begin{split} f(X \to J/\psi \pi \pi) &= -\frac{N}{(E - m_X^0) + \frac{i}{2}g(\sqrt{2\mu E} + \sqrt{2\mu_+(E - \delta)}) + \frac{i}{2}(\Gamma_\rho + \Gamma_\omega + ...)} \\ \delta &= (m_{D^{*-}} + m_{D^+}) - (m_{\bar{D}^{*0}} + m_{D^0}) = \text{lsospin splitting} \\ E &= m_{J/\psi \pi \pi} - m_D - m_{\bar{D}^*} \end{split}$$

 μ_+, μ = reduced mass of the charged/neutal $D\bar{D}^*$ pair

 $m_X^0 = a$ bare parameter for the mass of the X (stable determination)

If the fit to the Flatté lineshape works, it means only that the compact hypethesis for the X works!

The r_0 can only be found negative here!

DATA ON X: LHCB ANALYSIS

arXiv:2005.13419

The single channel analysis is obtained by $\Gamma_V, \ldots = 0$

$$f(X \to J/\psi \pi \pi) = -\frac{(2N/g)}{(2/g)(E - m_X^0) - \sqrt{2\mu_+\delta} + E\sqrt{\mu_+/2\delta} + ik}$$

$$-\frac{1}{a} = \frac{2m_X^0}{g} + \sqrt{2\mu_+\delta} \simeq -6.92 \text{ MeV positive } a$$

$$r_0 = -\frac{2}{\mu g} - \sqrt{\frac{\mu_+}{2\mu^2\delta}} \simeq -5.34 \text{ fm negative } r_0$$

using $E = k^2/2\mu$, μ being the reduced mass of the neutral $D\bar{D}^*$ pair, and taking g (LHCb) and m_X^0 (stable determination) from the experimental analysis. Since g can be larger, $r_0 \leq -2$ fm.

DETERMINATION OF Z

Neglect for the moment $O(1/\Lambda)$ corrections

$$r_0 = -\frac{Z}{1-Z}R_0 = -5.34 \text{ fm}$$
$$a = \frac{2(1-Z)}{2-Z}R_0 = \frac{197}{6.92} \text{ fm}$$

Gives
$$Z = 0.15 \neq 0!$$
 and $B = 20$ keV

Including ±5 fm makes quite a difference depending on the sign. In the case of -5 fm we might have Z = 0 even with $r_0^{exp} = -5.32$ fm! In the case of +5 fm, a negative experimental r_0 is the proof of the compact state.

However we shall see that in the molecular case $O(1/\Lambda) \rightarrow -0.2$ MeV

$(-r_0)$ ACCORDING TO SOME ESTIMATES

A: Baru et al., 2110.07484 B: Esposito et al., 2108.11413 C: LHCb, 2109.01056 D: Maiani & Pilloni GGI-Lects E: Mikhasenko T_{cc} , 2203.04622

H. Xu, N. Yu and Z. Zhang 2401.00411: $r_0 \approx -14$ fm combining LHCb and Belle data (for the **X**).

M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 2202.10110

Applying the lattice Lüscher method, the authors study the $D\bar{D}^*$ scattering amplitude and make a determination of the scattering length and of the effective range for \mathcal{T}_{cc}

a = -1.04(29) fm $r_0 = +0.96^{+0.18}_{-0.20} \text{ fm}$

The mass of the pion is $m_{\pi} = 280$ MeV, to keep the D^* stable. This result, for the moment, is compatible with a *virtual state* because of the negative a – like the singlet deuteron. As for LHCb (2109.01056 p.12)

> a = +7.16 fm-11.9 $\leq r_0 \leq 0 \text{ fm}$

What should be done: Flatté can be derived from an EFT with the field of the X and those of D^0, D^{*0}, D^+, D^{*-} . If the X field is in \mathscr{L} the particle is elementary.

If the fit "works", there is an elementary X!

Write an EFT with only D^0, D^{*0}, D^+, D^{*-} . Find the *f*, do another fit! **This would test the molecular hypotheis.**

There are no half ways!

The first to show up was the X(3872), which could have been another state of charmonium (discovered in the $J/\psi\pi^+\pi^-$ channel), **but it's not**

"could have been a compact tetraquark, **but it's not**" (E. Braaten)

"could have been a loosely bound molecule of hadrons, but it's not"

and then hadrocharmonium (M. Voloshin), deuson (N. Tornqvist)....

but it's not

- It would be useful to have two fits to the lineshape: the genuine "molecular" parametrization to be compared to the Flatté fit.
- Learn more, on the experimental side, about deuteron production at high p_T .
- Some states are produced promptly in *pp* collisions, some are not. There is no clear reason why!
- Are there loosely bound molecules $B\bar{B}^*$? Can we formulate more stringient bounds on X^{\pm} particles, or...discover them?