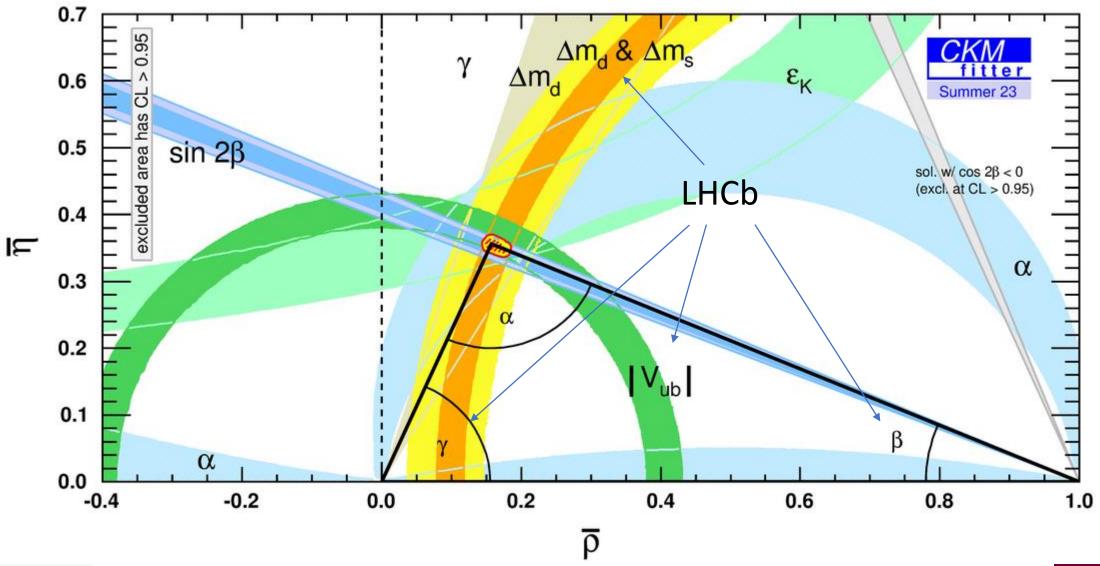
CKM and flavour physics at LHCb

Guy Wormser

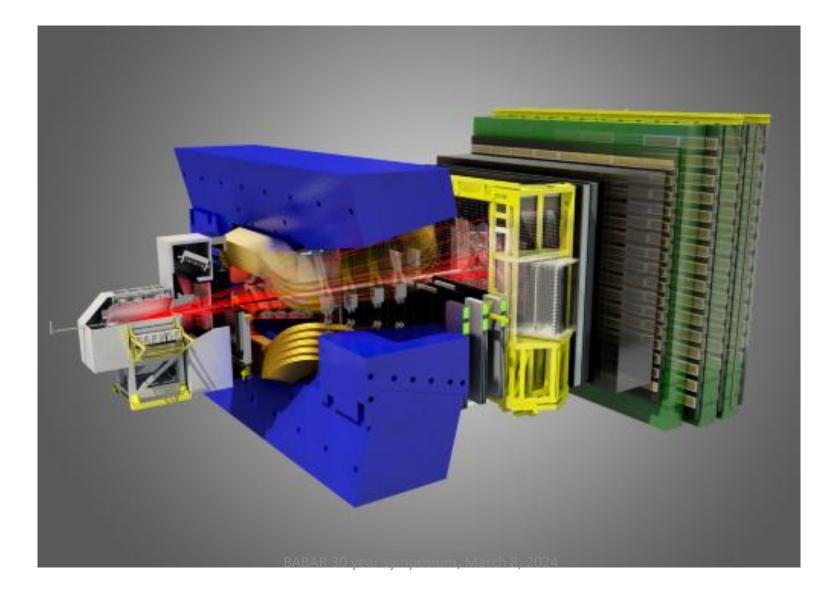
IJCLab Orsay

BABAR symposium

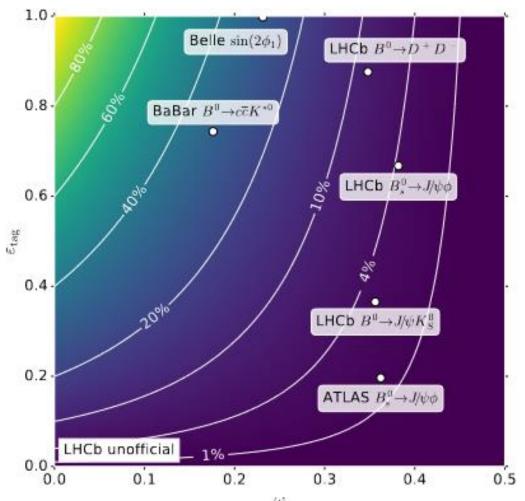


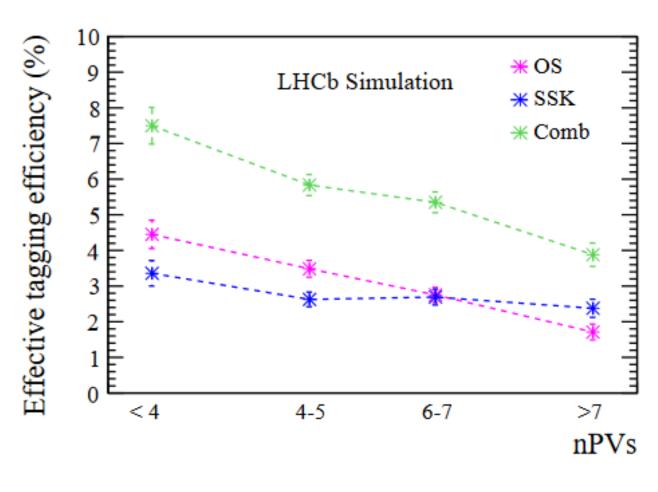
Talk outline

- What I will cover
 - CKM physics: angles and sides
 - Lepton Flavour Universality
- What I will not cover
 - Charm Physics
 - Rare decays
 - Hadron Spectroscopy
 - ...
- Some recent results and some retrospective
- Some projections for the future Run3 and beyond

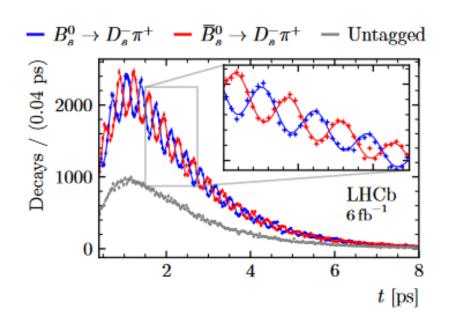


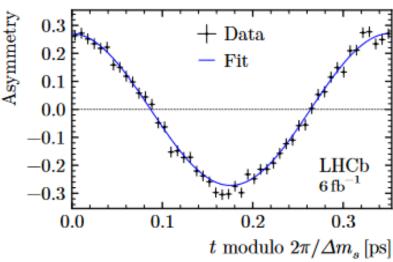
The LHCb detector


CKM physics at LHCb: What was expected


- Regarding angles
 - B_s CP violation studies:
 - Φ_s LHCb-PAPER-2023-016 (B_s \rightarrow J/ ψ KK), (LHCb-PAPER-2019-003, B_s \rightarrow J/ ψ π π)
 - Φ_{sss} LHCb-PAPER-2023-001 (B_s $\to \phi \phi$), (LHCb-PAPER-2017-048, B_s $\to (K\pi)(K\pi)$)
 - Measurement of γ angle LHC-CONF-2023-004 LHCb-CONF-2022-003
 - ullet Sub-dominant contribution to eta determination
- Regarding sides
 - B_s mixing (PAPER-2023-025, PAPER-2022-010).
 - Sub-dominant contributions to V_{cb} and V_{ub}

Tagging at LHCb (CERN-PUB-2018-019)

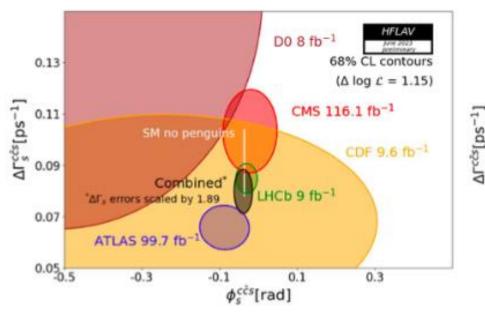


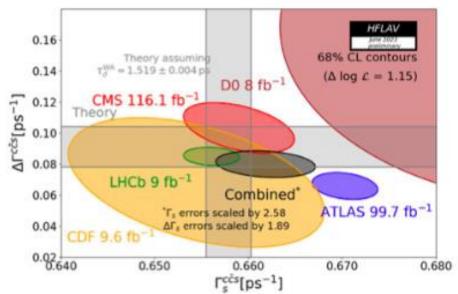


The most « textbook-like » measurement B_s mixing frequency measurement

LHCb-PAPER-2021-005

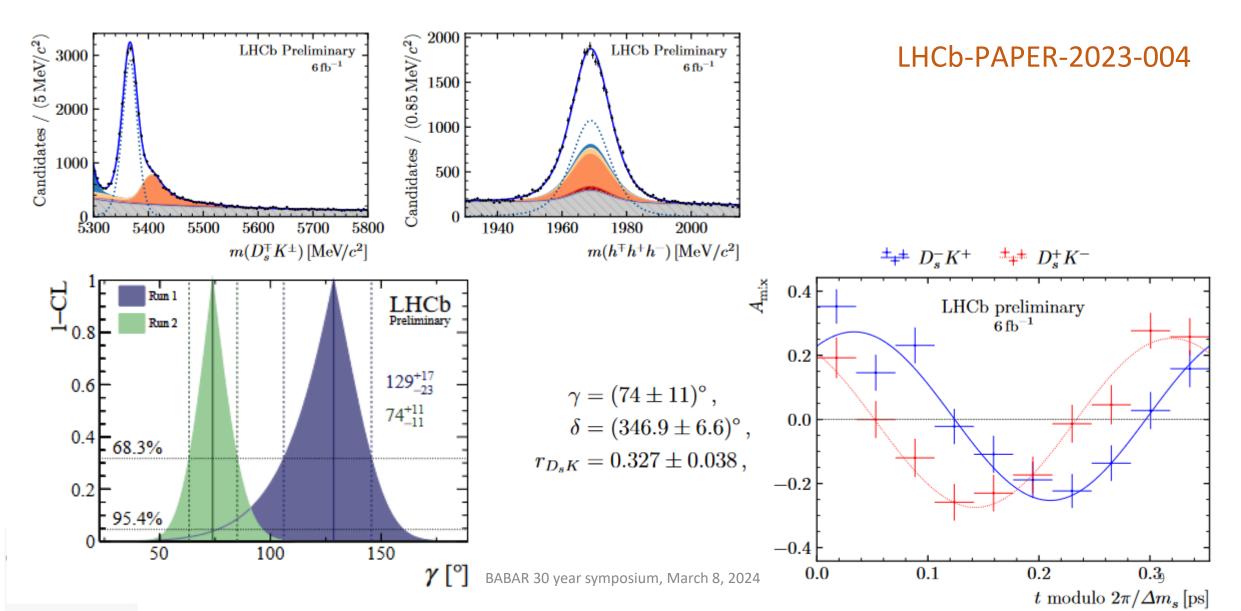
$$\sigma_{t} = 45 \text{ fs!}$$





CP violation in the B_s system

Measurement of ϕ_s in $B_s^0 o J/\psi K^+ K^-$ arXiv: 2308.01468


 ϕ_s world average:

$$\phi_s = -0.039 \pm 0.016 \text{ rad}$$

 $\phi_s(J/\psi KK) = -0.050 \pm 0.017 \text{ rad}$

γ measurement using B_s to D_sK

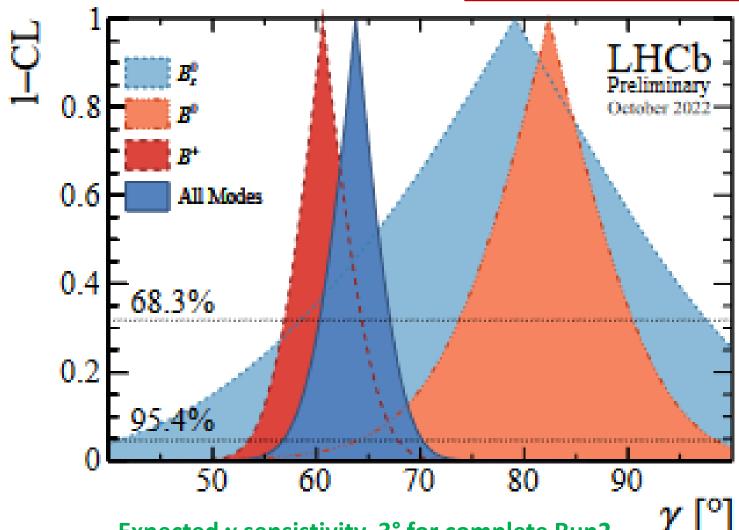
CKM Physics at LHCb: What was not expected!

- Angles
 - (CP violation in charm LHCb-PAPER-2019-006)
 - Huge CP violation effects in binned phase-space approach: PAPER-2022-017
 - Dominant contribution to β LHCb-PAPER-2023-013
 - So many modes for γ measurements !

PAPER-2023-040, PAPER-2023-029 and PAPER-2023-012

- Measurement with neutrals in the final state LHCb-PAPER-2020-040
- Sides
 - Important contributions to Vcb and Vub

LHCb-CONF-2022-003,


γ measurement- List of inputs!

B decay	D decay	Ref.	Dataset	Status since
				Ref. [14]
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	As before
$B^{\pm} \to D h^{\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[30]	Run 1	As before
$B^{\pm} \to Dh^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1&2	New
$B^{\pm} \to Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	19	Run 1&2	Updated
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 h^+ h^-$	[31]	Run 1&2	As before
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow K_{\rm S}^0 K^{\pm} \pi^{\mp}$	[32]	Run 1&2	As before
$B^\pm o D^*h^\pm$	$D \rightarrow h^+h^-$	[29]	Run 1&2	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D o h^+ h^-$	33	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[33]	Run 1&2(*)	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D ightarrow h^+ h^-$	34	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+h^-$	[35]	Run 1&2(*)	As before
$B^0 o DK^{*0}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[35]	Run 1&2(*)	As before
$B^0 o DK^{*0}$	$D ightarrow K_{ m S}^0 \pi^+ \pi^-$	36	Run 1	As before
$B^0 o D^\mp \pi^\pm$	$D^+ \to K^- \pi^+ \pi^+$	[37]	Run 1	As before
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ o h^+ h^- \pi^+$	[38]	Run 1	As before
$B_s^0 \to D_s^\mp K^\pm \pi^+ \pi^-$	$D_s^+ \to h^+ h^- \pi^+$	[39]	Run 1&2	As before

LHCb-CONF-2022-003,

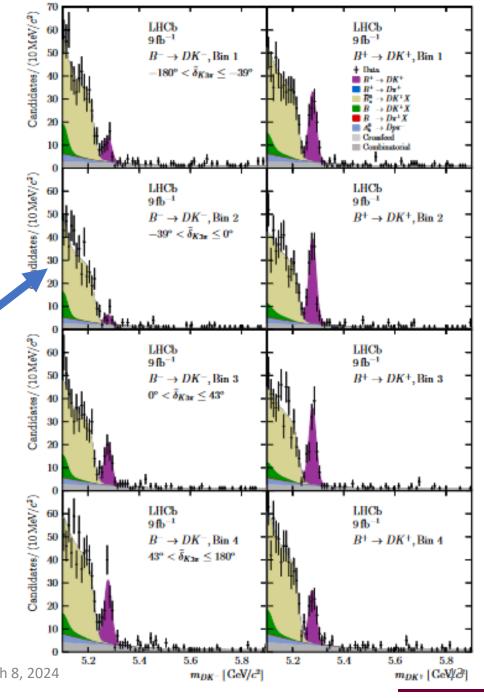
Expected γ sensistivity 3° for complete Run2 1° with Run3/Run4

Direct measurement

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$

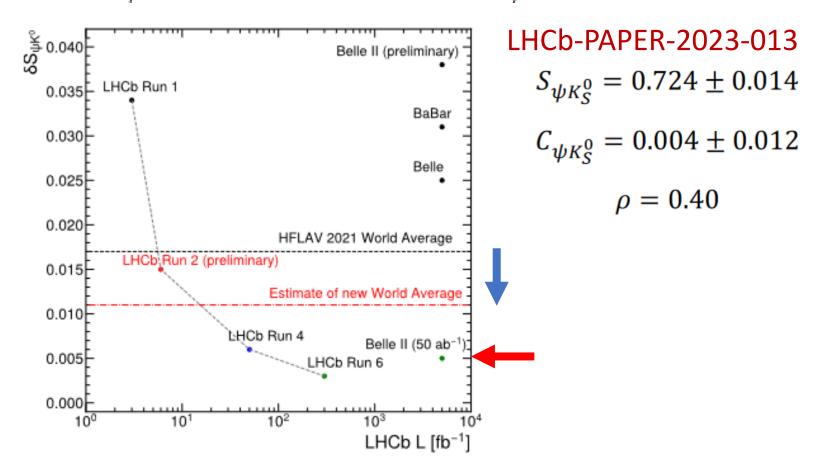
in very good agreement with but still less precise than the indirect prediction from CKM triangle

$$\gamma ^{
m [o]} = 66.29^{+0.72}_{-1.86} \; {
m [ind.]}$$


$B^{\pm} \rightarrow D[K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}]h^{\pm}$ LHCb- PAPER-2022-017

Bin	Limits $(\tilde{\delta}_{K3\pi})$	$R^i_{K3\pi}$	$\delta^i_{K3\pi}$
1	$-180^{\circ} < \bar{\delta}_{K3\pi} \le -39^{\circ}$	$0.66^{+0.18}_{-0.21}$	$(117 + \frac{14}{-19})^{\circ}$
2	$-39^{\circ} < \bar{\delta}_{K3\pi} \le 0^{\circ}$	$0.85{}^{+ 0.14}_{- 0.21}$	$(145 + \frac{23}{14})^{\circ}$
3	$0^{\circ} < \bar{\delta}_{K3\pi} \le 43^{\circ}$	$0.78^{+0.12}_{-0.12}$	$(160^{+19}_{-20})^{\circ}$
4	$43^{\circ} < \tilde{\delta}_{K3\pi} \leq 180^{\circ}$	$0.25^{+0.16}_{-0.25}$	$(288 + 15 \atop -29)^{\circ}$

The largest (direct) CP violation effect ever observed



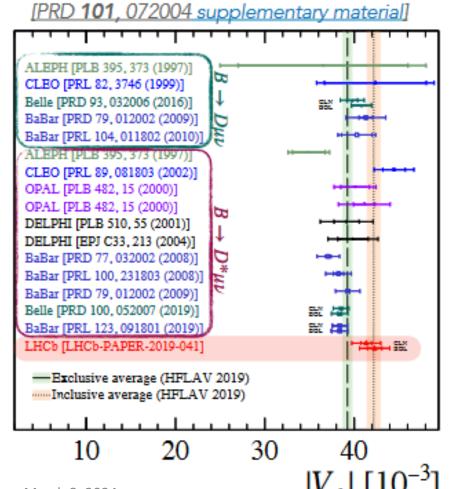
sin2β status ans prospects

 \rightarrow Important change in $sin(2\beta)$, following preliminary LHCb results

from $\sin 2\beta = 0.699 \pm 0.017$ to $\sin 2\beta = 0.708 \pm 0.011$

[HFLAV]

V_{ch} and V_{uh} profit of the B_s and Λ_h semileptonic decays!


First exclusive $|V_{cb}|$ extraction at a hadron collider and first

determination using $B_{\rm s}^0$ decays

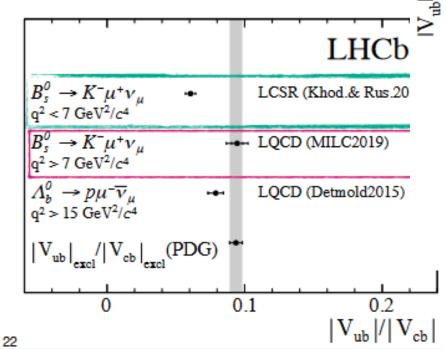
$$|V_{cb}|_{\text{CLN}} = (41.6 \pm 0.6(\text{stat}) \pm 0.9(\text{syst}) \pm 1.2(\text{ext})) \times 10^{-3}$$

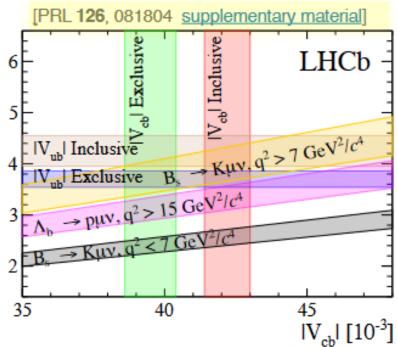
$$|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$$

- Both extractions are compatible with each other
- Agreement with exclusive via B^{0/+} and inclusive $|V_{ch}|$ determinations.

Extraction of $|V_{ub}|/|V_{cb}|$

Phys. Rev. Lett. 126 (2021), 081804


Low
$$q^2$$
: $\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = 1.66 \pm 0.08 \text{(stat)} \pm 0.07 \text{(syst)} \pm 0.05 (D_s) \times 10^{-3}$

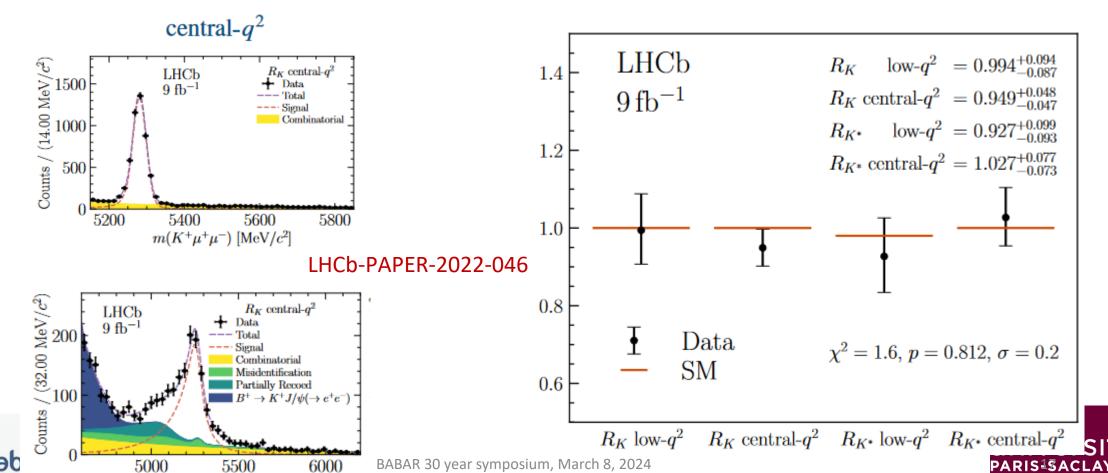

$$\mbox{High q^2:} \quad \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)} = 3.25 \pm 0.21 ({\rm stat})^{+0.16}_{-0.17} ({\rm syst}) \pm 0.09 (D_s) \times 10^{-3}$$

→ with FF predictions from LCSR [JHEP 112 (2017)] and LQCD [PRD 100, 034501]

$$\begin{split} |V_{ub}|/|V_{cb}|_{\mathrm{low}} &= 0.0607 \pm 0.0015 (\mathrm{stat}) \\ &\pm 0.0013 (\mathrm{syst}) \pm 0.0008 (D_s) \\ &\pm 0.0030 (\mathrm{FF}) \end{split}$$

$$|V_{ub}|/|V_{cb}|_{high} = 0.0946 \pm 0.0030 (stat)$$

 $^{+0.0024}_{-0.0025} (syst) \pm 0.0013 (D_s)$
 $\pm 0.0068 (FF)$



Lepton Flavour Universality at LHCb

• In neutral currents, b \rightarrow se $^+$ e $^+$ vs b \rightarrow s $\mu^+\mu^-$ (many modes investigated : K,K * , Λ ,pK, ϕ ,...)

 $m(K^+e^+e^-) [\text{MeV}/c^2]$

R(D^(*)) measurements in LHCb

$$R(D)=BR(B\rightarrow D\tau\nu)/BR(B\rightarrow D\mu\nu)$$

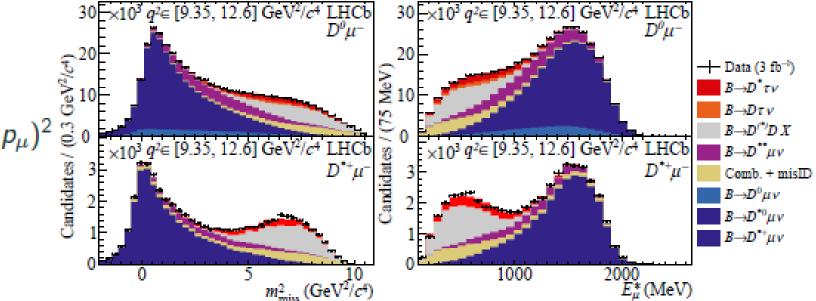
$$\tau^- \rightarrow \mu^- \nu_{\tau} \nu_{\mu}$$

$$\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$$

- Pros
 - Direct measurement of R(D,D*)
 - High statistics
- Cons
 - Double charm background control must be very good (mostly D⁺)
 - Sensitive to D** $\mu^-\nu_\mu$

- Pros
 - The possibility to measure the τ vertex is the key to reject the background and obtain a high purity sample
 - The 3π dynamics of the τ decay is very specific : possible to distinguish τ decays from the main double charm background from D_s decays
- Cons
 - Access to R(D) requires an external BR
 - Lower statistics

$R(D^{(*)})$ with muonic au decays


LHCb-PAPER-2022-039

• Simultaneous measurement of R(D) and $R(D^*)$ with Run 1 data using muonic $\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$

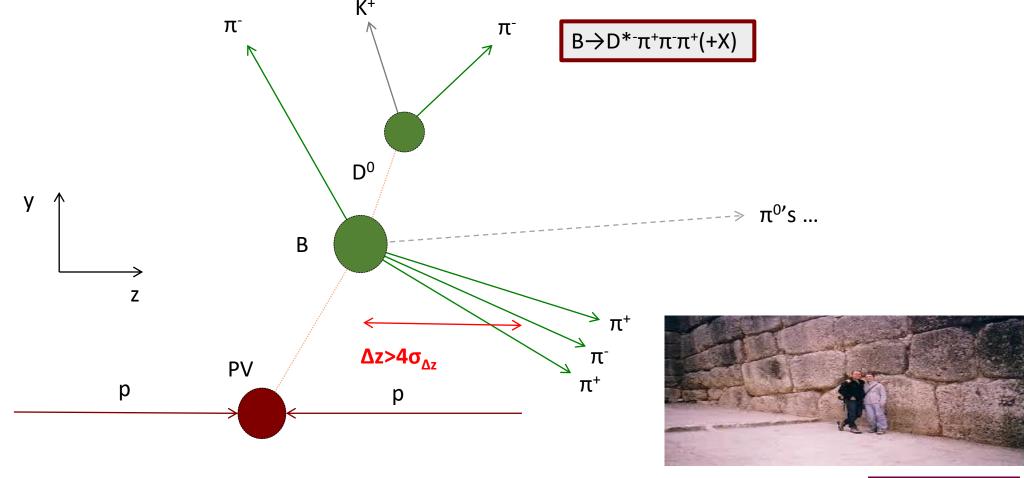
3D template fit to

$$ightharpoonup m_{\text{miss}}^2 \equiv (p_B - p_{D(*)} - p_{\mu})^2$$

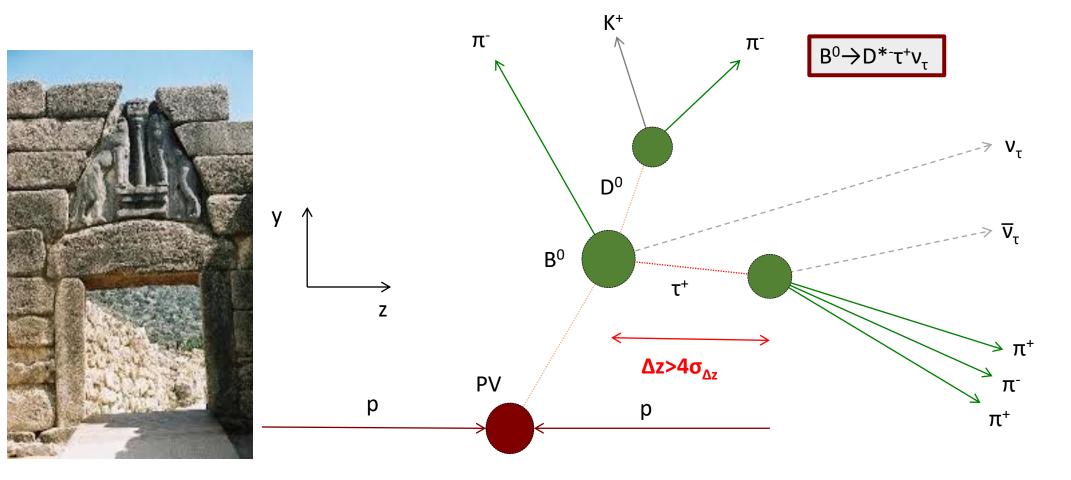
▶ E_{μ}^* energy of μ

$$R(D) = 0.441 \pm 0.060(stat) \pm 0.066(syst)$$

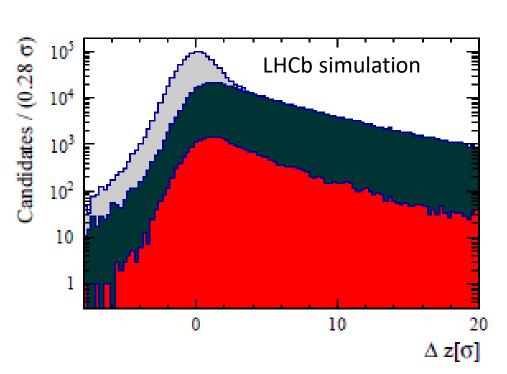
$$R(D^*) = 0.281 \pm 0.018(stat) \pm 0.023(syst)$$

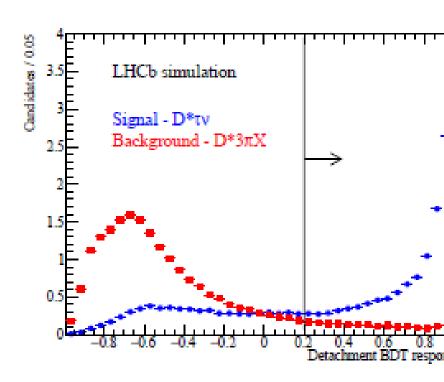

Agreement with SM at 1.9σ

$R(D^*)$ measurement with hadronic τ decays


Vertex topology of the usual B decay 100 times larger than the signal

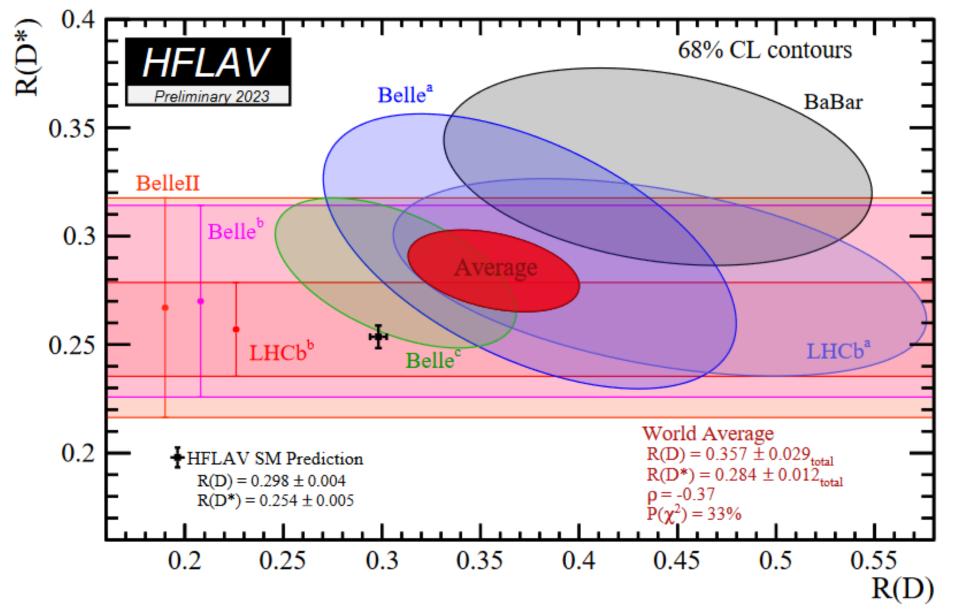
Selection: detached vertex




$B \to D^{*-}3\pi^{\pm}X$ backgrounds

- Suppressed by requiring the τ vertex to be downstream w.r.t. the B vertex along the beam direction detachment criteria
- A BDT classifier is used along with the vertex separation variables

LHCb-PAPER-2022-052 arxiv:2305.01463

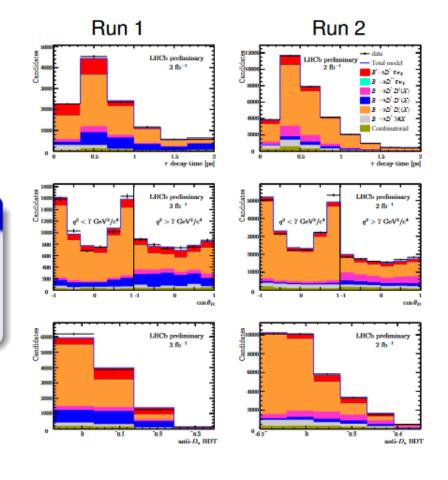

Prompt D*3πX
Double Charm
Signal

Background rejection >99,9%!

D* polarization LHCb results LHCb-PAPER-2023-020 arXiv:2311.05224

- Signal yields from a 4D-binned template fit:
 - τ^+ lifetime (first row)
 - $q^2 \& \cos \theta_D$ (second row)
 - anti-D_s BDT output (third row)
- Fit performed simultaneously on Run 1 and Run 2
- Results are integrated over Run 1 and Run 2

$F_L^{D^*}$ value extracted for the 3 q^2 region

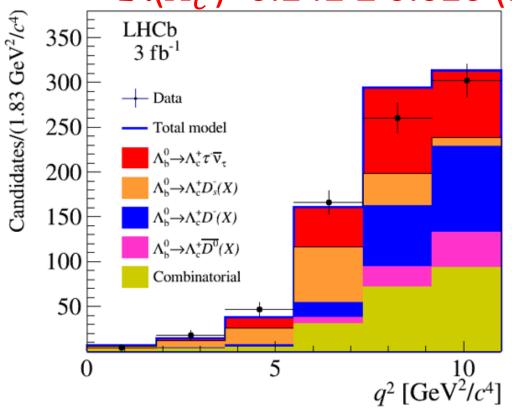

 $q^2 < 7 \,\text{GeV}^2/c^4: \qquad 0.51 \pm 0.07(stat) \pm 0.03(syst)$

 $q^2 > 7 \,\text{GeV}^2/c^4$: $0.35 \pm 0.08(stat) \pm 0.02(syst)$

 q^2 integrated: $0.43 \pm 0.06(stat) \pm 0.03(syst)$

- All values are found to be compatible with the SM within 1σ
 - ullet expected value in the integrated region \sim 0.44

[arXiv:1808.03565, arXiv:1805.08222, arXiv:1907.02257]

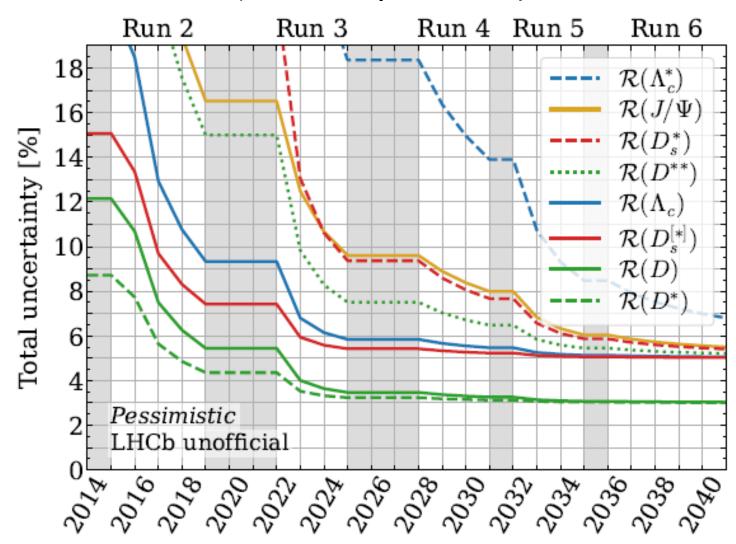


LHCb measurement of R($\Lambda_{\rm c}$) with hadronic τ decays

LHCb-PAPER-2021-044 arxiv:2201:03497

 $\mathcal{R}(\Lambda_c^+)=0.242 \pm 0.026 \text{ (stat)} \pm 0.040 \text{ (syst)} \pm 0.059 \text{ (ext)}$

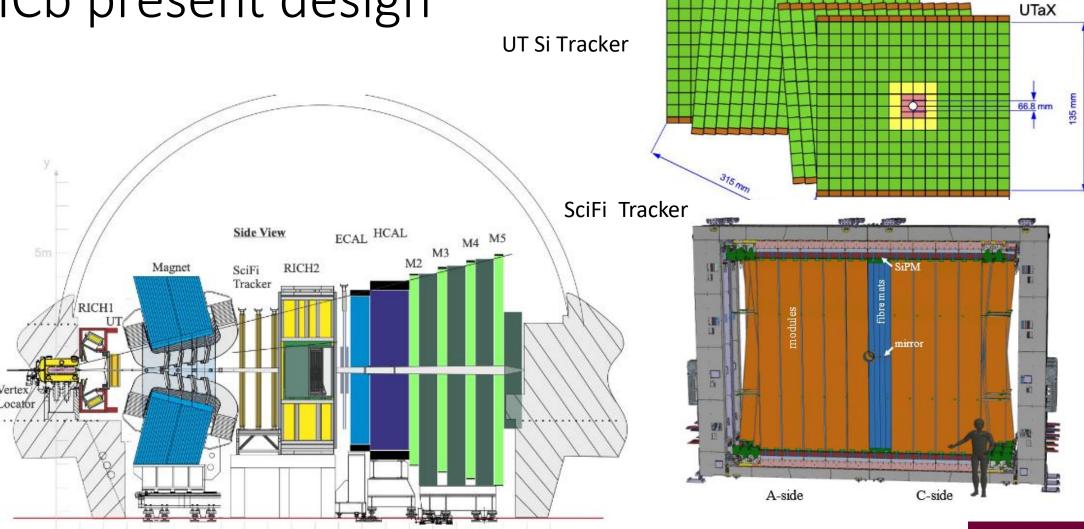
(SM expectation= 0.324 ± 0.004)


F. Bernlochner et al., Physical Review D 99 055008 (2019) with input from W. Detmold, C. Lehner, S. Meinel, Physical Review D 92 034503 (2015)

Semitauonic prospects

(Rev. Mod. Phys. 94, 015003)

LHCb Upgrade 1 (LHCb-DP-2022-002)


- Goal:
 - Luminosity jump 2 10³² to 10³³
 - Get rid of L0 trigger (hardware-based)
- Consequences: DAQ running at 40 MHz -> all front-electronics changed!
- Other improvments :
 - UT and SciFi trackers
 - VELO pixels instead of strips, closer to the beam
- Commissioned in 2023 to a great extent but no significant luminosity integrated up to now. (delays, Modest LHC running, VELO RF box incident).

Running successfully in 2024 is really mandatory!

LHCb present design

173 mm

UTbX

UTbV

UTaU

Conclusion

- LHCb is making unique contributions to all areas of CKM physics :
 - Angles β and γ
 - Sides: V_{ts},V_{td},V_{ub},V_{cb}
 and in Lepton Universality tests
 - In rare FCNC modes
 - In semitauonic decays
- LHCb is now the world leader in many areas, even those where it was not expected to contribute!
- Prospects are bright!
- In all these domains, the input from the other experiments, especially BES-III and Belle-II, will be essential to beat down the systematics!

$R(D^*)$ with hadronic τ decays

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})} = 1.700 \pm 0.101 (\text{stat})^{+0.105}_{-0.100} (\text{syst})$$

• The absolute branching fraction of $B^0 \to D^{*-} \tau^+ \nu_{\tau}$ decays

$$\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau}) = (1.23 \pm 0.07 \, (\mathrm{stat}) \pm 0.08 \, (\mathrm{syst}) \pm 0.05 (\mathrm{ext})) \times 10^{-2}$$

$$R(D^*) = \mathcal{K}(D^*) \frac{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

• The BFs of $B^0 o D^{*-} 3\pi^\pm$ and $B^0 o D^{*-} \mu^+ \nu_\mu$ - external inputs

$$R(D^*) = 0.247 \pm 0.015(\text{stat}) \pm 0.015(\text{syst}) \pm 0.012(\text{ext})$$

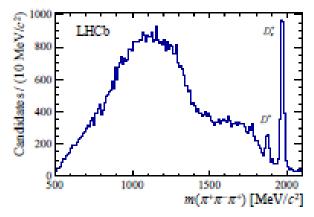
In agreement with Run 1 result

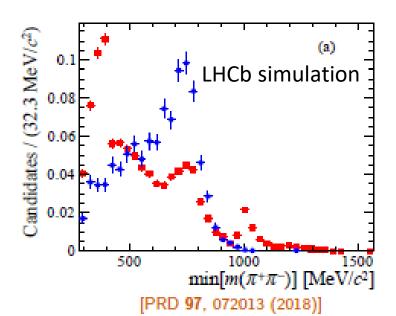
Combining with the Run 1 result

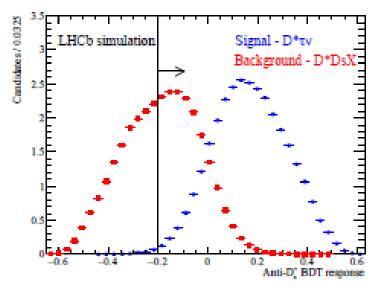
LHCb-PAPER-2022-052 arxiv:2305.01463

$$R(D^*)_{2011-2016} = 0.257 \pm 0.012 \text{ (stat)} \pm 0.014 \text{ (syst)} \pm 0.012 \text{ (ext)}$$

Agreement within 1σ to SM $R(D^*)_{\rm SM} = 0.254 \pm 0.005$ [HFLAV]



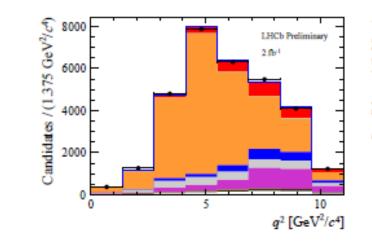

Double-charm backgrounds

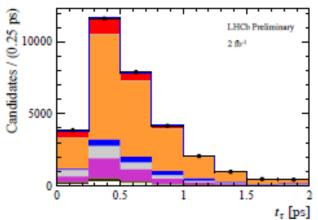


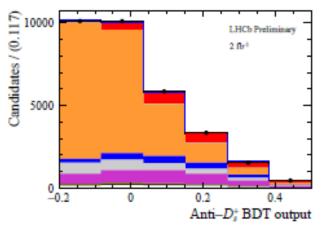
- $B \to D^{*-}(D_s^+, D^+, D^0)X$ backgrounds
- $B \to D^{*-}D_s^+X$ the largest contributor
- A BDT classifier based on kinematics and resonant structure to separate signal from $B \to D^{*-}D_s^+ X$

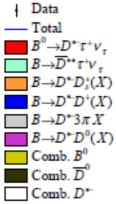
[PRD 97 072013 (2018)]

BR($D_s \rightarrow 3\pi X$)=32.8% ± 0.9% BES-III arxiv:2212.13072


• This BDT output is one of the fit variables for signal extraction




Signal extraction



LHCb-PAPER-2022-052 arxiv:2305.01463

Total
$$B^0 \rightarrow D^* \tau^+ \nu_{\tau}$$
 $N(B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}) = 2469 \pm 154$ $B \rightarrow D^* D^* \tau^+ \nu_{\tau}$ Run 1 yield $= 1296 \pm 86$

- ▶ Larger dataset
- ▶ Improved selection

