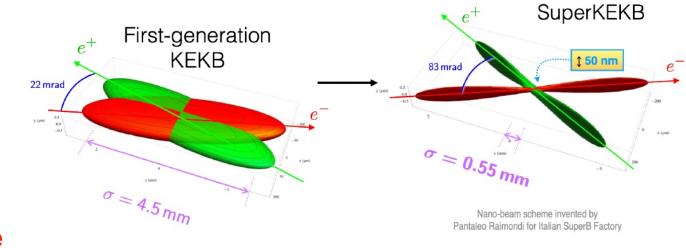
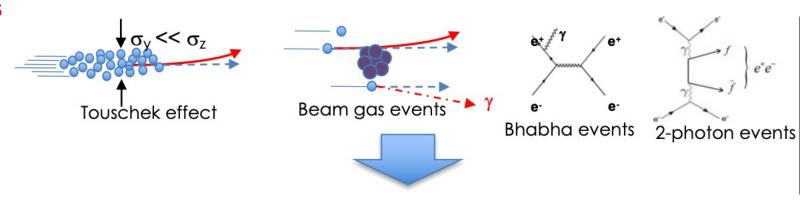
The Belle II Upgrade Program

C. Cecchi Università degli Studi di Perugia & INFN-PG

The Belle II Collaboration



~1200 physicist and engineers from 122 institutions in 28 countries/regions


The SuperKEKB

- Upgrade of KEKB accelerator to achieve 30x instantaneous luminosity and multi-ab⁻¹ sample
- In the nominal configuration:
 - x1.5 by increasing beam currents
 - x20 by nano-beam scheme

$$L = \frac{N_{+}N_{-}n_{b}f_{0}}{4\pi\sigma_{x,eff}^{*}\sqrt{\varepsilon_{y}\beta_{y}^{*}}}$$

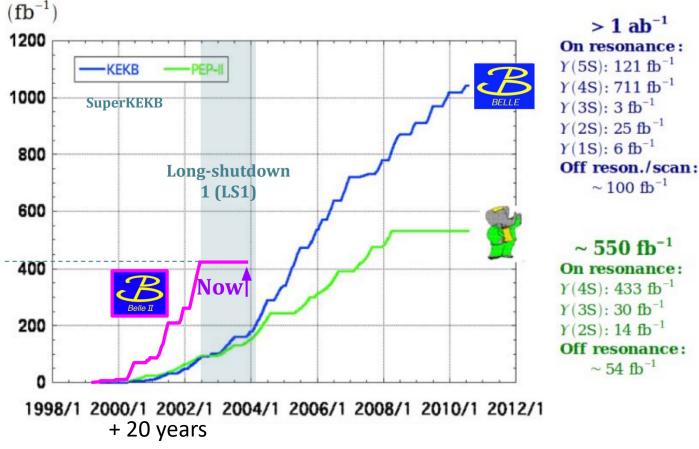
Induces parasitic particles → beam backgrounds

Constraints on detector

- Low boost ($\beta \ge .28$) \rightarrow Better vertexing
- High trigger rate
- High background rate

→ Faster detectors

Luminosity status


World record luminosity 4.7x10³⁴ cm⁻²s⁻¹

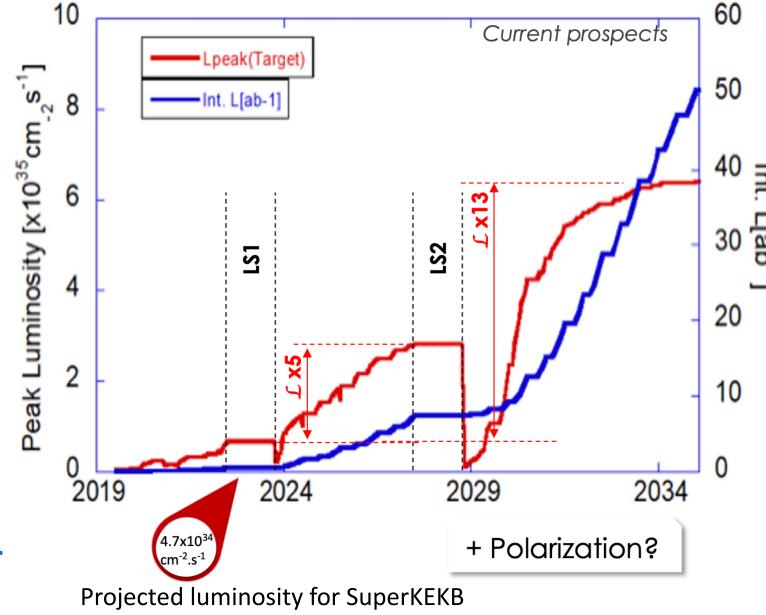
LS1 completed

installation of the complete 2-layer
 pixel detector and other detector works

• improvements on accelerator side to reach higher luminosities and mitigate machine background

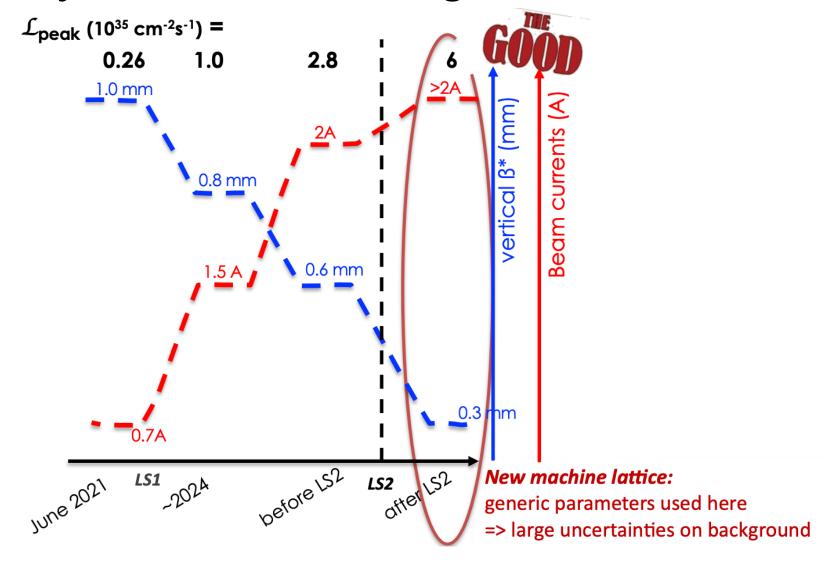
Integrated luminosity ~430 fb⁻¹

Projected luminosity

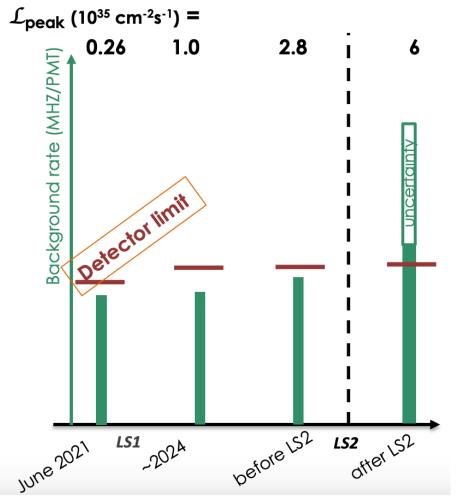

120-fold increase in integrated

luminosity $(0.4 \rightarrow 50 \text{ ab} - 1)$

• 13-fold increase in instantaneous


luminosity (0.5 \rightarrow 6×10³⁵ cm⁻² s⁻¹)

- Get the luminosity higher
 - SuperKEKB improvements in LS1
 - Mitigate various background sources
 - SuperKEKB upgrade in LS2
 - Large impact on Interaction Region (IR)
- Cope with higher background
- Get more physics per ab⁻¹
- Big challenge both for Accelerator


Detector

Luminosity vs Beam Background

Luminosity vs Beam Background

Predictions example: TOP (each subsystem affected differently)

Operational conditions:

- Complex collimator system
- Injection background from new bunch
- Sudded beam loss events

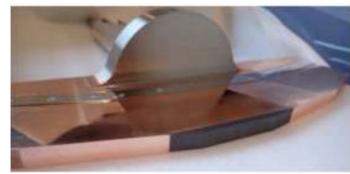
Continuos improvement process

Present knowledge:

- From LS1 to LS2: $1x10^{35}$ < Lpeak < $2.8x10^{35}$ cm⁻²s⁻¹
 - Beam background high but tolerable without performance loss
- Beyond LS2: up to 6x10³⁵ cm⁻²s⁻¹
 - Systems getting close or reaching current limits:
 - Main tracker (CDC), central PID (TOP), Silicon tracker (SVD)

Long Shutdown1 (LS1)

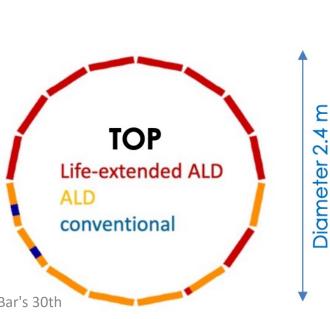
Started in July 2022 - motivated by the installation of the completed PXD

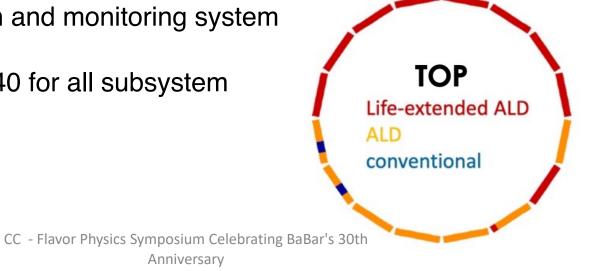

- Consolidation machine
 - Counteracts against sudden beam loss
 - Real time monitoring
 - Faster abort system
 - Collimator head should survive severe beam loss
 - Harder head material, better resistance
 - NLC for background mitigation
 - Improved neutron shielding
 - Around final focus magnets (QCS)
 - Around endcaps
 - RF cavity replacement
 - More stable operation
 - higher currents
 - Injection → higher efficiency and mitigated background
 - faster kicker magnet
 - new quadrupole focusing magnet
 - new large aperture beam pipe
 - Operations restarted in January 2024

Larger pipe injection

Shielding on QCS bellow

Carbon collimator head


Long Shutdown1 (LS1)


Detector upgrade

Anniversary

- Installation of complete pixel detector
 - 2 new complete layers of DEPFET sensors (second layer was 17% complete)
- Replacement of ~50% of TOP to Life Extended Atomic Layer Deposition (ALD) MCP-PMTs
 - Increased lifespan & hit rate limit (3 →5 MHz/cm²)
- Improved CDC gas distribution and monitoring system
 - Better gain stability
- DAQ system upgrade to PCIe40 for all subsystem
 - But PXD (specific data path)

Belle II Upgrade schedule from LS2

Longer term Upgrades. Behind LS2

KLM: Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF

ECL: Crystal replacement with pure CsI and APD; pre-shower; replace PIN-diodes with APD photosensors.

VXD: C.Bespin #151 Thurs@12.15

Trigger: K.Unger #201

electron (7GeV)

QCS replacement and IR redesign

TRIGGER: Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives **VXD**: options

- DEPFET
- Thin Strips
- SOI-DUTIP
- DMAPS

CDC: Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk

TOP: Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option

STOPGAP: Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger

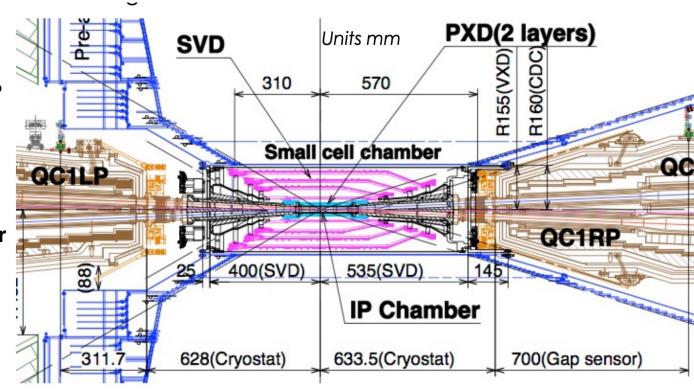
ARICH: possible photosensor upgrade on longer term

positron (4GeV)

Computing

0110001

Lots of Data

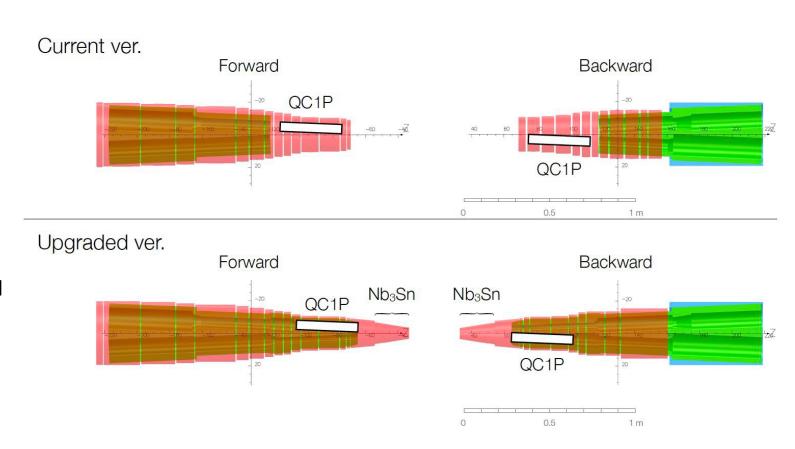


Belle II Upgrade for LS2

GOAL: higher luminosity while limiting beam beam effects & preserving beam lifetime

IR has various options:

- Position of final focusing magnets (QC) closer to IP
- New QC magnets
- Additional solenoid for lower emittance while compensating Belle II field
- Need feed-back from 2024 beam operation
- Belle II envelope in interaction region still under study → schedule for LS2 is indicative

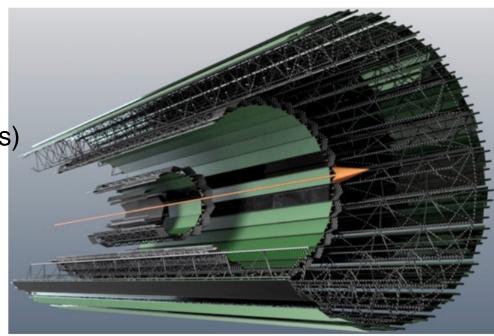

Interaction Region Upgrade

Motivations:

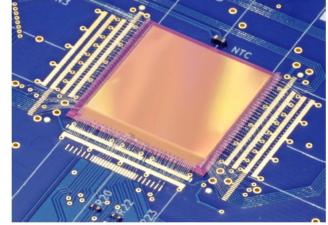
 Limit beam-beam effects, preserve beam lifetime

Concept:

- Redesign final focus
 - Extend final magnet closer to IP
 - New anti-solenoid Niobium-tin coil placed between final magnet and IP
- Overall nearly double the Touschek lifetime in simulations


VXD Upgrade requirements \rightarrow new VTX

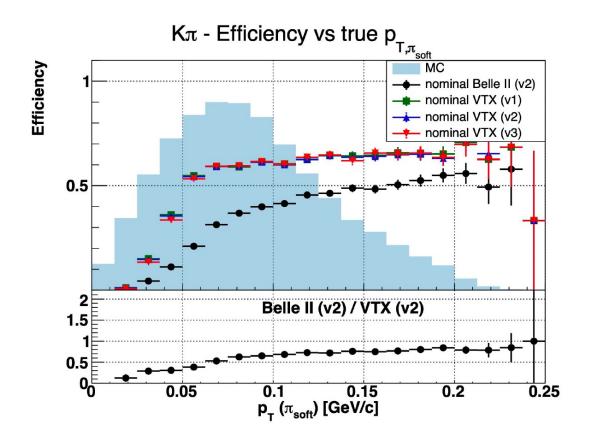
Motivations:


- Cope with larger background rates
- Improve momentum and impact parameter resolution at low p_T
- Simplify vertex system (pixels + strips → pixels)
- Contribution to L1 trigger
- Operation without data reduction

Concept:

- 5 layers with high space-time granularity & low material budget
 - Robustness against high radiation environment (innermost layer) - occupancy < ∂(10⁻⁴)
 - Higher vertexing precision
- Lighter services and simpler design
 - adaptable to potential change of interaction region

Diam. 28 cm length 70 cm => 1 m²

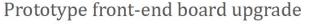

VTX Upgrade Specifications

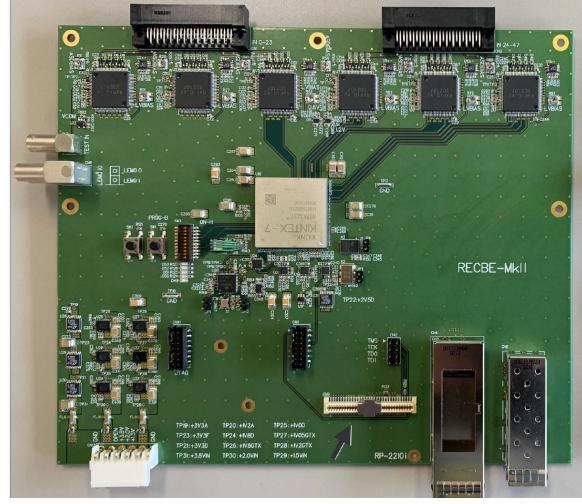
- Depleted monolithic active CMOS pixels
- Sensitive layer thickness < 30 μm (~2500e from MIPs vs. 200-250e threshold)
- Sensor thickness < 50 μm
- iVTX: innermost 2 layers, self-supported, air-cooled
- oVTX: outer 3 layers, CF structure, single-phase coolant
- Prototype (TJMonopix2, developed for ATLAS) has largely met these specifications, including irradiation tests
- New OBELIX DMAPS sensor, targeting Belle II specific application, now in final design phase

Chip	
Pixel pitch	30-40 μm
Integration time	≤ 100 ns
Performance	
Single-point resolution	< 15 μm
Material budget	$0.1\%-0.8\% X_0$ (inner-outer layers)
Environment	
Hit rate	120 MHz/cm ²
Total ionizing dose	100 Mrad
NIEL fluence	$5x10^{14} n_{eq}/cm^2$

VTX Upgrade Physics Impact

- $B^0 \to D^* l \nu$: "bread-and-butter" physics for Belle II (R(D*), angular analysis, IVcbl, B-tagging, ...)
- Slow pion from D* decay: low-p → low-efficiency
- ~70% improvement in efficiency
- ~35% better B-decay vertex resolution


CDC Upgrade – new FE electronics


Motivations:

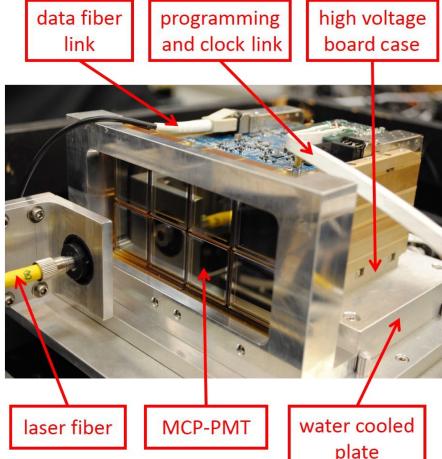
- Towards better tracking performance
- Reduce cross-talk, power consumption, and increase output bandwidth
- Improve radiation tolerance

Concept:

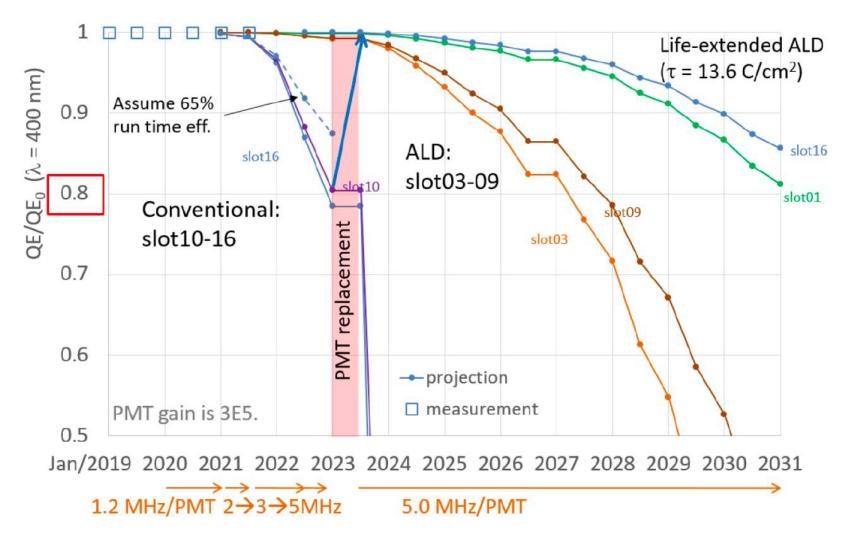
- New: ASICs, FPGA, optical module
 - ASIC chips to measure signal timing and digitize waveform
 - FPGA for online data processing and for the trigger and data acquisition systems
 - Rad-hard fiber transceivers, QSFP for data transfer to the trigger and DAQ

PID Upgrade: Time of Propagation counter

Motivations:


- MCP-PMTs degrading under higher-than-expected backgrounds
- Performance improvements
- Better particle-ID performance
- Feature extraction inside ASIC
- Reduced power consumption

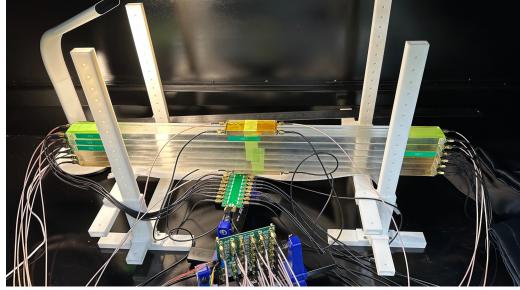
Concept:

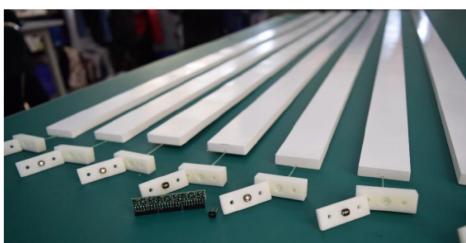

- Technology implementation for LS2
 - Complete 50% MCP-PMT's upgrade with Lifetimeextended ALD-PMTs with better radiation tolerance
 - Redesign front-end boards (ASoC) with Gbps to FPGA Lower power budget and more compact design (to accommodate potential SiPM's)
- Beyond LS2: R&D for SiPM photosensors

PID Upgrade: QE degradation

KLM Upgrade: K_L⁰ and muon detector

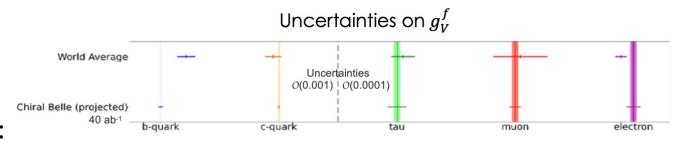
New capability: K_I ⁰ energy measurement

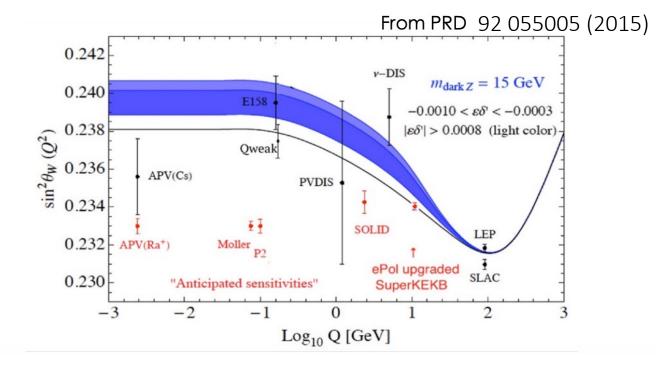

- Replace remaining RPC's in barrel with scintillators
 + SiPM's (very complex operation)
- Fast timing (~100 ps) gives K_L⁰ E via TOF
- Not settled: physics impact still under study


Readout upgrades

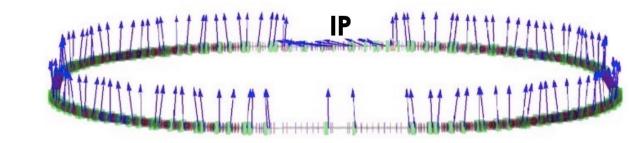
- Re-design electronics layout with feature-extraction ASIC inside panel, only digital I/O (optical)
- Replace many km of twisted-pair ribbon cables with a few fibers

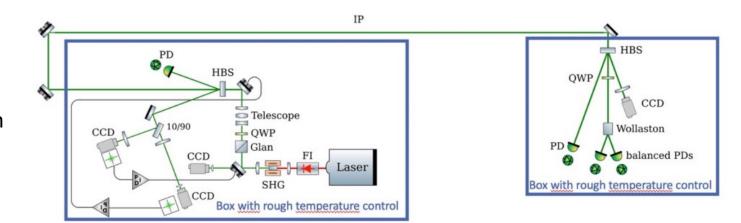
RPC in avalanche mode


- From streamer to avalanche → less charge → larger rate capability
- Gas composition with electronegative element SF₆ to be studied →
- Overall efficiency only slightly lower
- Amplification of the signal → new FE boards
- Method applied for ATLAS RPC new SiGe preamp ($\epsilon = 95\%$ with <Q> $\simeq 2$ pC)



Chiral Belle II – potential physics reach


- Electroweak vector neutral current
 - Tensions in A_{FB}^{0,b} (LEP) / A_{LR}(SLC)
 - Left-right asymmetries with 5 fermions: b, c, e, μ , τ
- Dark sector
 - Sensitivity to light Z_{dark} through $\sin^2 \theta_W$
- Tau physics
 - Unique place for g-2
 - Sensitivity $^{\circ}$ O(10⁻⁵) with 50 ab⁻¹
 - Additional background suppression in LFV channels
 - Using helicity distributions
 - $\tau \rightarrow \ell \gamma$



Chiral Belle II — installation during LS2

- Low emittance polarised source
 - Laser on GaAs cathodes under development
 - Need transverse polarization for injection in HER
- Spin rotators
 - Get longitudinal polarization electrons before IP
 - Option1: additional spin-rotator magnets => repositioning of some magnets
 - Option 2: replace two magnets with new combined-magnets dipole + rotator
- Compton polarimeter
 - Follows HERA experience
 - Monitor polarization at 0.5% absolute precision

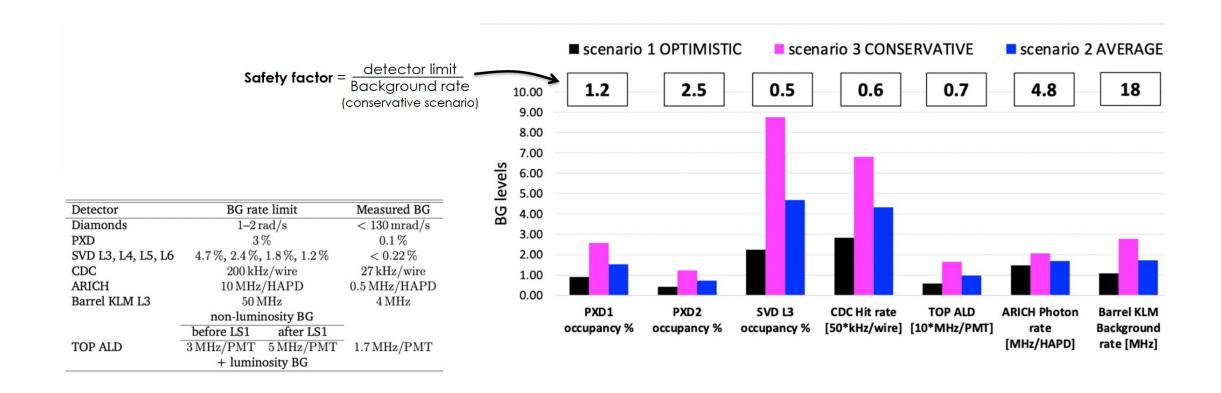
Summary

- Restarted data taking for Run2 February 2024 after upgrades in LS1
 - PXD2
 - IR work to improve beam stability, background control and higher luminosity
- New Run2
 - First collision at LER/HER β^* = 8 mm on Feb. 20th at 22:13 (JST)
 - Physics run at β^* = 3 mm Feb. 28th (SWING) March 5th
 - 520 mA (LER), 380 mA (HER) •
 - Peak Lumi: 4.3×10³³ cm⁻² s⁻¹
 - Physics run at $\beta^* = 1 \text{ mm} \text{reached yesterday March 7th}$
 - 0.7×10³⁴ cm⁻² s⁻¹
- Looking forward to new physics results before the LS2 which will prepare the machine and the Belle II detector for its absolute best performance → exciting times ahead!

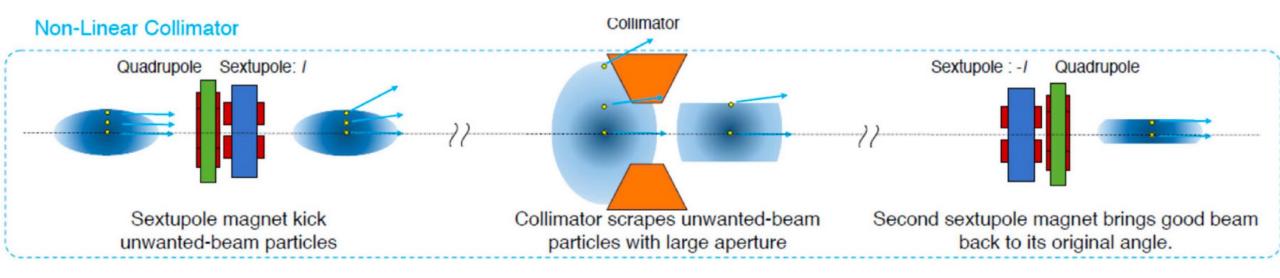
Backup slides

Belle II Upgrade schedule from LS2

EOI	Upgrade ideas scope and technology	Time scale
DMAPS	Fully pixelated Depleted CMOS tracker, replacing the current VXD. Evolution from ALICE ITS developed for ATLAS ITK.	LS2
SOI-DUTIP	Fully pixelated system replacing the current VXD based on Dual Timer Pixel concept on SOI	LS2
Thin Strips	Thin and fine-pitch double-sided silicon strip detector system replacing the current SVD and potentially the inner part of the CDC	LS2
CDC	Replacement of the readout electronics (ASIC, FPGA) to improve radiation tolerance and x-talk	< LS2
ТОР	Replace readout electronics to reduce size and power, replacement of MCP-PMT with extended lifetime ALD PMT, study of SiPM photosensor option	LS2 and later
ECL	Crystal replacement with pure CsI + SiPM; pre-shower; add SiPM photodetectors to the actual PiN-diodes	> LS2
KLM	Replacement of barrel RPC with scintillators, upgrade of readout electronics, possible use as TOF	LS2 and later
Trigger	Take advantage of electronics technology development. Increase bandwidth, open possibility of new trigger primitives	< LS2 and later
STOPGAP	Study of fast CMOS to close the TOP gaps and/or provide timing layers for track trigger	> LS2
TPC	TPC option under study for longer term upgrade	> LS2


New Si vertex & tracker

CC - Flavor Physics Symposium Celebrating BaBar's 30th


Anniversary

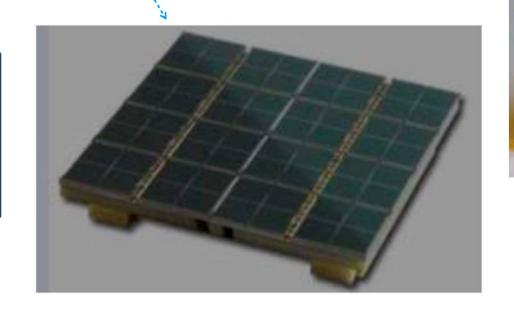
Long term options

Beam Background scenarii for L = 6 *10³⁵ cm⁻²s⁻¹

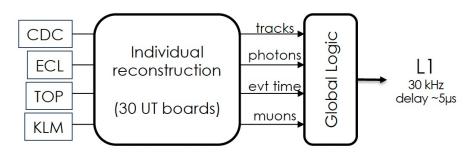
Non Linear Collimators (NLC)

ECL Upgrade

2 Csl(pure) (6 × 6 × 30 cm³) 1.8 ⊕ WLS plate (with NOL-9) ⊕ 4 APDs (S8664-55) optical density of the layer with NOL-9 ◆w/o WLS is shown in Equivalent noise energy [MeV] WLS(3) √ beyond LS2 ... → WLS(4) • replace Csl(Tl) with pure Csl (or LYSO or LaBr₃) for shorter pulses & less pile-up add wavelength-shifting plate for better energy resolution 0.8 • replace PIN-diode sensors with APDs (or SiPMs) 0.6 for better energy resolution front-end readout re-design add pre-shower detector ENEs [MeV] CsI(TI) ⁶⁰Co source pindiodes ■ APD+CR110 ⁶⁰Co source Active absorber (crystal scintillator) Si pixel detector 100 200 300 400 500


ARICH Upgrade

√ beyond LS2 …


- R&D for SiPM photosensors or MCP-PMTs / LAPPD
- R&D for compatible readout (custom or FASTiC from LHCb)
- R&D for aerogel upgrade

- target long term
- Fill-in gaps between TOP quartz bar
- CMOS-MAPS with 50 ps timing

Trigger Belle II Upgrade

UT generation	UT3	UT4	UT5
Main FPGA (Xilinx)	Virtex6	Virtex Ultrascale	Varsal
	XC6VHX380-565	XCVU080-190	
Sub FPGA (Xilinx)		Artex7	Artex7, Zynq
# Logic gate	500k	2000k	8000k
Optical transmission rate	8 Gbps	25 Gbps	58 Gbps
RAM		DDR4	DDR4, UltraRAM
# UT boards	30	30	10
Cost per a board (k\$)	15	30	50
Time schedule	2014-	2019-2026	2024-2032

- More powerful hardware UT4 and UT5 trigger boards
- Avoid merger boards, more bandwidth
 - Using all CDC TDC and ADC information → Vertex resolution improved x2 and 50% trigger rate reduction
- Keep high-efficiency on hadronic events and improve on low-multiplicity

Component	Feature	Improvement	Time	$\#\mathrm{UT}$
CDC cluster finder	transmit TDC and ADC from all wires with the new CDC front end	beamBG rejection	2026	10
CDC 2Dtrack finder	use full wire hit patterns inside clustered hit	increase occupancy limit	2022	4
CDC 3Dtrack finder	add stereo wires to track finding	enlarge θ angle acceptance	2022	4
CDC 3Dtrack fitter (1)	increase the number of wires for neural net training	beamBG rejection	2025	4
CDC 3Dtrack fitter (2)	improve fitting algorithm with quantum annealing method	beamBG rejection	2025	4
Displaced vertex finder	find track outside IP originated from long loved particle	LLP search	2025	1
ECL waveform fitter	improve crystal waveform fitter to get energy and timing	resolution	2026	-
ECL cluster finder	improve clustering algorithm with higher BG condition	beamBG rejection	2026	1
KLM track finder	improve track finder with 2D information of hitting layers	beamBG rejection	2024	_
VXD trigger	add VXD to TRG system with new detector and front end	BG rejection	2032	_
GRL event identification	implement neural net based event identification algorithm	signal efficiency	2025	1
GDL injection veto	improve algorithm to veto beam injection BG Screenshot	DAQ efficiency	2024	_