

DRD1 Collaboration proposal

Piotr Gasik FAIR, Darmstadt, Germany)

on behalf of the DRD1 Collaboration

I Executive summary (35 pages)

- Introduction

2

- Scientific organization of the DRD1 Collaboration
- Collaboration Organization
- Resources and Infrastructure
- Partners and Their Fields of Contributions
- Steps towards the formation of DRD1 Collaboration
- DRD1 Implementation Team

II Scientific Proposal and R&D Framework (102 pages)

- Research topics and Work plan
 - (8 sections, one per Working Group)

Link to the very last version

- Following the General Strategic Recommendations (ECFA Detector R&D Roadmap), the DRD1 Collaboration aims to promote the development, diffusion, and applications of gaseous detectors, towards the implementation of the four ECFA Detector roadmap themes*
- Community-driven ("bottom-up") collaboration with the cross-disciplinary R&D environment and exchange: common infrastructures (labs, workshops), common R&D tools (software and electronics)

DRD1 pillars:

3

- 1. Community-Driven Collaboration
- 2. Recognition and Support for Young R&D Experts
- 3. Dynamic and Open R&D Environmen
- 4. Global Network and Access to Facilities
- 5. Support for "Blue-Sky" R&D
- 6. Efficient Resource Pooling
- 7. Increasing Research Potential

	I.7 DRD1 Implementation Team			
	I.7.1 Roles covered during the DRD1 Implementation Phase			
	In this section, the roles covered during the formation of the collaboration are listed.		Big APPRECIATION to th	e DRD1
	Task Force Conveners Anna Colaleo, Leszek Ropelewski;		COMMUNITY for great TEAM	
	Implementation Team Florian Brunbauer, Silvia Dalla Torre, Klaus Dehmelt, Ingo Deppner, Esther Ferrer Ribas, Roberto Guida, Giuseppe Iaselli, Jochen Kaminski, Bar- bara Liberti, Beatrice Mandelli, Eraldo Oliveri, Marco Panareo, Francesco Renea, Hans		allowed to shape the "legacy	/ document"
ng R&D Experts	Taureg , Fulvio Tessarotto , Maxim Titov , Joao Veloso , Peter Wintz		for the gaseous detectors of	domain for
nent	Proposal Review Team Amos Breskin, Paul Colas, Jianbei Liu, Supratik Mukhopadhyay, Atsuhiko Ochi, Emilio Radicioni		decades to come	2
cilities	 Working Groups Conveners WG1: P. Colas. I. Deppner, L. Moleri, F. Resnati, M. Tygat, P. Wintz WG2: G. Aielli, D. Gonzalez Diaz, R. Farinelli, F. Garcia, P. Gasik, F. Grancagnolo, G. Pugliese WG3: K. Dehmelt, B. A. Gonzalez, B. Mandelli, G. Morello, D. Piccolo, F. Renga, S. Roth, A. Pastore WG4: M. Abbrescia, M. Borysova, P. Fonte, O. Sahin, R. Veenhof, P. Verwilligen WG5: R. Cardarelli, M. Gouzzvitch, J. Kaminski, M. Lupberger, H. Maller WG6: G. Charles, R. De Oliveira, A. Delbart, G. Iaselli, F. Jeanneau, I. Laktineh WG7: A. Ferretti, R. Guida, G. Iaselli, E. Oliveri, Y. Tsipoliti WG8: E. Baracchini, F. Brunbauer, M. Iodice, B. Liberti, A Paoloni 	Overall C WP1: G. WP2: N. WP3: P. V WP4: D. WP5: I. I WP5: F. I WP6: F. I WP7: F. I WP8: D.	Gonzalez Diaz, E. Ferrer Ribas, F. I. Garcia Fuentes, P. Gasik, J. Kaminski	
		DRD5: F. DRD6: I. DRD7: M US-CPAI	. G. Diaz Tessarotto Brunbauer	04 42 2022

RD51 vs. DRD1 Collaboration

Worldwide coordination of the research in the field to advance the technological development of gaseous detector technologies

RD51

DRD1

Micropattern Gaseous Detectors

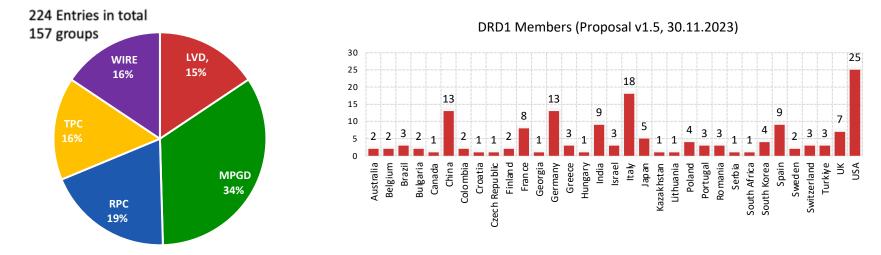
ttps://rd51-public.web.cern.ch

 Image: state stat

Large Volume Detectors, MPGD, RPC, TPC, WIRE

- >700 participants from 157 institutes in 33 countries
 - + 4 Industrial, Semi-Industrial partners and Research Foundations

~450 Participants from 89 Institutes in 31 Countries



DRD1 Collaboration

https://drd1.web.cern.ch/

• Worldwide coordination of the research in the field to advance the technological development of

different gaseous detector technologies (Large Drift Chambers, MPGD, RPC, TPC, wire)

- >700 participants from 157 institutes in 33 countries
 - + 4 Industrial, Semi-Industrial partners and Research Foundations

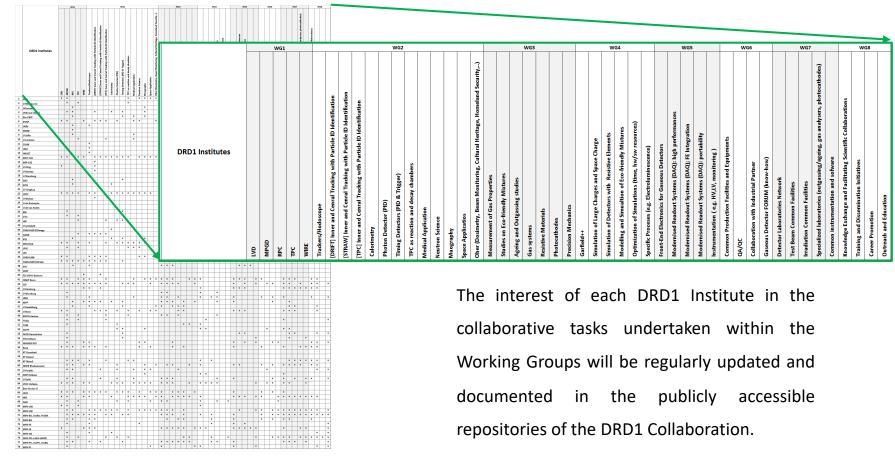
6

The scientific organization is structured in eight Working Groups, the core of the scientific collaboration:

- supporting the development of novel technologies and the consolidation of existing ones,
- facilitating the exchange of ideas and fostering synergies between institutes,
- playing a crucial role in identifying, guiding, and supporting strategic detector R&D directions, facilitating the establishment of joint projects between institutes.

	DR	DTs		Forum for discussion on common topics							S	
1.1	1.2	1.3	1.4	Work Packages	WG1	WG2	WG3	WG4	WG5	WG6	WG7	WG8
٠	٠	٠		Trackers/hodoscopes				vare				
٠	٠	•		Drift chambers				software				
٠	٠	٠		Straw chambers				s and	detectors			
٠	٠	٠	•	Tracking TPCs			S	ations	dete			ion
٠		٠		Calorimetry			studie	simulations	gaseous	Ę	ties	dissemination
٠	٠	٠		Photon detection (PID)						production	facilitie	lisser
•		٠		Timing detectors	gies	suo	material	physics	cs for	prod	i test	and c
•	•	٠	•	Reaction/decay TPCs	Technologies	Applications	and	Detector tools	Electronics	Detector	nommo	Training
•		•		Beyond HEP	Tect	App	Gas	Dete tools	Ше	Def	Col	Trai

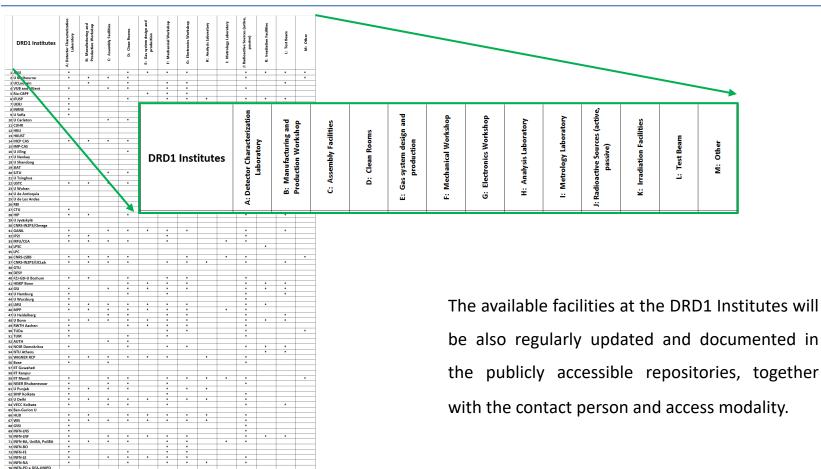
7



The collaborative structure of DRD1 keeps RD51 structure in Working Groups

Working-group conveners coordinate R&D tasks of the respective working groups. Two coordinators elected through a nomination process, approved by MB and CB

WG 1	WG 2	WG 3	WG 4	WG 5	WG 6	WG 7	WG 8
Technologies	Applications	Gas and material studies	Detector physics, simulations, and software tools	Electronics	Detector production	Common test facilities	Training and dissemination
Large Volume Detectors (Drift chambers, TPCs)	Trackers/Hodoscope	Measurement of Gas Properties	Garfield++	Front-End Electronics for Gaseous Detectors	Common Production Facilities and Equipments	Detector Laboratories Network	Knowledge Exchange and Facilitating Scientific Collaborations
MPGDs	Inner and Cenral Tracking with PID Capabilities: - Drift Chambers - Straw tubes - TPC	Studies on Eco-friendly Mixtures	Simulation of Large Charges and Space Charge	Modernised Readout Systems (DAQ): high performances	QA/QC	Test Beam Common Facilities	Training and Dissemination Initiatives
RPCs, MRPCs	Calorimetry	Ageing and Outgassing studies	Simulation of Detectors with Resistive Elements	Modernised Readout Systems (DAQ); FE Integration	Collaboration with Industrial Partner	Irradiation Common Facilities	Career Promotion
ТРС	Photon Detector (PID)	Gas sytems	Modelling and Simualtion of Eco-friendly Mixtures	Modernised Readout Systems (DAQ): portability	Gaseous Detector FORUM (know-how)	Specialized laboratories (outgassing/ageing, gas analysers, photocathodes)	Outreach and Education
Straw tubes, TGC, CSC, drift chambers, and other wire detectors	Timing Detectors (PID & Trigger)	Materials studies: - novel material (nanomaterial) - new material for wire - new converter	Optimization of Simulations (time, hw/sw resources)	Instrumentation (e.g. HV,LV, monitoring)		Common instrumentation and sofware	
New amplifying structures	TPC as reaction and decay chambers	Photocathodes	Specific Proceses (e.g. Electroluminescence)				
	Beyond HEP - Medical Application - Neutron Science - Muography - Space Applicatios - Oher (Dosimetry, Beam Monitoring, Cultural Heritage, Homeland Security,)	Precision Mechanics					


Contributions of DRD1 Institutes to the Working Groups

Contributions of DRD1 Institutes to common facilities

9

.

.

٠

.

.

77 INFN-PV, UniPV, UniBG

78 INFN-PI

Organization of the collaboration activities

CERN

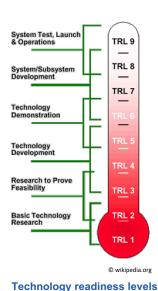
Following the indication of ECFA Detector Panel two areas of Detector R&D :

- "Blue-sky" R&D (competitive, short-term responsive grants, nationally organised)
- Strategic R&D via DRD Collaborations (long-term strategic R&D lines) (address the high-priority items defined in the Roadmap via the DRDTs)

Two types of DRD1 joint projects will be implemented:

Common projects

For low-TRL (blue sky) R&D, or other short term generic projects


Work Packages

Strategic R&D targeting the priority programmes outlined in the updated European Strategy for Particle Physics

Common projects

- **Common Projects (CP)** support **low TRL (blue-sky) R&D** considered of interest by the collaboration, **or generic projects that are vital for the community and require** special backing:
 - Technology R&D projects towards development of novel techniques, improvements of existing technologies, characterization methods and dedicated tools;
 - Development and optimization for novel applications;
 - Improvement of the technology transfer to industry;
- Well-defined path (RD51 experience): DRD1 Common Fund (details will be clearly defined in the MoU) supports CP with matching resources from participating Institutes.
 - a minimum number of participating Institutes to encourage collaborative effort between groups.
 - limited in time
 - limited funding support from the collaboration (example 20-30k/y)

Large number of groups in DRD1 ensures strong R&D!

Common fund and common investments

A Common Fund will be established, supported by limited and fixed yearly contributions from each DRD1 institute. This fund will serve as a valuable resource for supporting activities of common interest within the collaboration, for example:

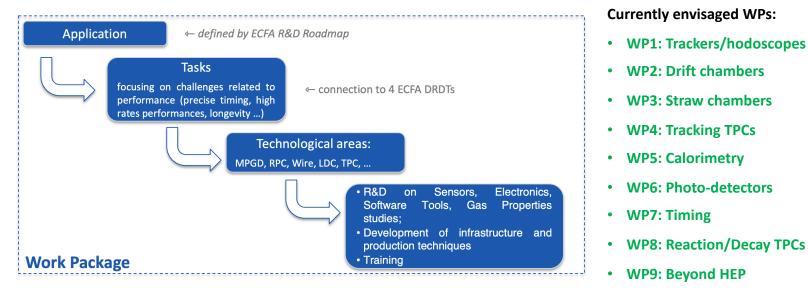
Common Projects

12

- Software and Electronics development
- Common Facilities
- Collaboration events and Collaboration Management.

Common investments, such as materials and infrastructure, within the DRD1 Collaboration, will be covered, depending on the interest in the community and the required resources:

- by common funds
- by mechanisms similar to the Work Packages


This cooperative approach allows for the sharing of expenses related to essential requirements like base material, production or testing equipment, large-scale electronics production or other procurement activities.

Strategic R&D (according to the ECFA Detector R&D Roadmap) is organized in Work Packages

• group activities of the Institutes with shared research interests around Applications with a focus on a specific task(s) devoted to a specific DRDT challenge, typically related to specific Detector Technologies and to the development of specific tools or

infrastructure

• There is no obligation to participate in a WP to be a member of DRD1.

WP tables - explanation

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable 24M	36M	Institutes	1		
	New RPC structures	 Develop low-cost re- sistive layers Increase rate capability from 10 kHz to 1 MHz 	WGS	DRDT	1234	2414	50M	INFN-BA, UniBA, PoliBA,			
		per cm ² - Improve timing reso- lution from sub-ns to ps levels	WG1, WG2,	1.1, 1.2,	M1.1 Review of De-	M2.1 Detector Proto-	D1 Large area RPC	INFN-LNF, INFN-RM2, UniRomaTOV,	0	Task	- Challenges defined in ECFA Roadmap
1	New Resis- tive MPGD Structures	 Stable up to gains of O(10⁶) High gain in a single multiplication stage High rate capability (1 MHz/cm² and beyond) 	WG3, WG4, WG5, WG6,	1.3	tector Prototypes: examining the current status and future prospects of innovative resistive materials, novel structures, and chal- lenges in hybridizing	types Enhance- ment: building upon the insights from M1.1. Proof of rate capability above 100 kHz/cm ² , assessing the status and poten- tial improvements	and MPGD pro- totypes: design, construction, and test of RPC and MPGD-based pro- totypes [T1, T2] with advanced solu- tions for extensive	INFN-BO, INFN-FE, INFN-NA, INFN-RM3,	0	Performance goal	- Community feedback
T3 1	New Front-	 High tracking performance (100 μm) Development of low- granularity 2D-readout with high-tracking per- formance New front-end 	WG7, WG8		Resistive Plate Chambers (RPC) and Micro-Pattern Gas Detectors (MPGD). This evaluation includes compiling of a com- prehensive report	of RPC and MPGD detectors, informed by feedback from the previous phase. [T1, T2, T5, T6, T7, T8] M2.2	surface coverage [T6], optimized for medium-high flow rates (range tens kHz/cm ² – few MHz/cm ²), precise tracking (100 µm) and timing (ns and	INFN-TO, IRFU/CEA, IFIN-HH, Istinye U,	0	DRD1 WGs	- Link to DRD1 WGs activities
i	end electron- ics	 1 fC threshold High-sensitivity electronics to help achieve stable and efficient operation up to ≈MHz/cm² High granularity detector capability 			highlighting compar- ative performance, along with the re- spective advantages and disadvantages of available technolo- gies. [T1, T2, T5,	Design and Sim- ulation studies of new ASIC: Building blocks for MPGD and RPC and tech- nical note(s) about	sub-ns time resolu- tion). This includes considerations for the compatibility of eco-friendly gases. [T5, T7]	CERN, CIEMAT, LMU,	0	ECFA DRDT	- Connection to ECFA DRDTs
1	Optimization of scalable multichannel readout sys-	 Front-end link con- centrator to a power- ful FPGA with possibil- ities of triggering and 			T6, T7, T8] M1.2 Review of the status	the chips expected performance. [T3] M2.3	D2 New frontend and DAQ systems: completion of the	WIS, Wigner, U Kobe,	0	Milestones/	- Top-level milestones and deliverables for the first three
	tems	≈20 GBit/s to DAQ for high-rate experiment -Develop robust, com- pact, and low power DAQ for low-rate exper-			of the art of ASICs and DAQ systems, and definition of the requirements	Design of a novel readout system for Gaseous Detec- tors: assessment	innovative ASICs' final design; com- pilation of compre- hensive production	U Cambridge, USTC,		Deliverables	years of a WP activity. Based on detailed annexes (>330
	Eco-friendly gases	Gurantee long-term operation - Explore compatibility and optimized operation with low-GWP gases			for next-generation large area muon systems. [T3, T4]	of performance achievements based on DAQ modelling. [T4]	documentation; if applicable, initiation of the engineering run for the first chip, should it be in an advanced stage [T3]. DAQ system proto- typing for gaseous	U Oviedo, UNSTPB, UTransilvania, VUB and UGent,			pages), to be signed as MoU addenda.
T6 1	Manufacturing	 Technological transfer for cost-effective pro- duction of high-quality, high-performance large area resistive MPGD. Reliable production of homogeneous resis- 					detectors, aiming to push the boundaries in terms of timing, radiation resistance, multi-channel high rate acquisition and performance, for large systems [T4].	U Genève, U Hong Kong, MPP, BNL,	0	Institutes	- List of institutes interested in joining a WP. Estimate or
		tive large DLC foils with the CERN-INFN sputtering machine					nige systems [14].	FIT, JLab,			available/additional resources and commitment to
1	Longevity on large detector areas	 Study discharge rate and the impact of irra- diation and transported charge (up to C/cm²) Study the impact of low-GWP gases and new materials on high radiation hardness envi- ronment 						MSU, Tufts, UC Irvine, U Florida,			tasks/deliverables provided in detailed annexes.
1	New Hybrid- multi- technologies Structures	- Development of new ideas of detector struc- tures and hybridization						U Massachusetts, Amherst, U Michigan, UW-Madison, IGPC			

Example Work Package Table: WP1 - Trackers/Hodoscopes

Resource and infrastructures: Work Package

CERN

Resource and Participation Tables are presented in the proposal as cumulative data:

- gathering "confidential material" from institutes,
- no commitment is assured at this stage
- institutes need to verify with their FAs the potential consideration of proposed resources.
- the final commitment will be provided only at the time of submission of Work Package for approval

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP1	Trackers/Hodoscopes	651	516	501	47.45	50.9	50.7
WP2	Inner and Central	394	163	167	19.45	21.45	23.45
	Tracking with PID						
	Capability, Drift						
	Chambers						
WP3	Inner and Central	163.5	70	65	32	37.3	40.3
	Tracking with PID						
	Capability, Straw and						
	Drift Tube Chambers						
WP4	Inner and Central	268	268	253	15	15	14.5
	Tracking with PID						
	Capability, Time						
	Projection Chambers						
WP5	Calorimetry	150	150	150	12.75	12.75	12.75
WP6	Photo-Detectors	275	325	315	11.9	11.4	11.4
WP7	Timing Detectors	420	311	311	24.1	21.7	20.7
WP8	TPCs as Reaction and	495	505	405	78.35	73.05	72.55
	Decay Chambers						
WP9	Beyond HEP	803	783	694	40.5	37.5	35.2
	SUM	3456	3091	2861	281.5	281.05	281.55

Cumulative information about <u>existing resources</u> 2024-2025-2026

FAs can have different approval steps

Resource and infrastructures: Work Package

CERN

Resource and Participation Tables are presented in the proposal as cumulative data:

- gathering "confidential material" from institutes,
- no commitment is assured at this stage
- institutes need to verify with their FAs the potential consideration of proposed resources.
- the final commitment will be provided only at the time of submission of Work Package for approval

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP1	Trackers/Hodoscopes	716	1040	670	21.8	23.55	23.55
WP2	Inner and Central	79	89	93	3.15	8.4	9.15
	Tracking with PID						
	Capability, Drift						
	Chambers						
WP3	Inner and Central	525	325	330	11.7	12.9	12.9
	Tracking with PID						
	Capability, Straw and						
	Drift Tube Chambers						
WP4	Inner and Central	238	238	238	11.3	11.3	11.3
	Tracking with PID						
	Capability, Time						
	Projection Chambers						
WP5	Calorimetry	50	50	50	1	1	1
WP6	Photo-Detectors	180	270	250	4.6	5.1	5.6
WP7	Timing Detectors	257	307	346	3	5.5	6.9
WP8	TPCs as Reaction and	516.5	471.5	436.5	35.1	40	40
	Decay Chambers						
WP9	Beyond HEP	140	225	275	15.9	20.4	23.9
	SUM	2701.5	3015.5	2688.5	107.55	128.15	134.3

Cumulative information about additional resources needed 2024-2025-2026

FAs can have different approval steps

17

WP	Description	Material	FTE/year	
		(2027-2029)	(2027-2029)	
		[kCHF/year]		
WP1	Trackers/Hodoscopes	1365	73	
WP2	Inner and Central Tracking with PID	328	28	
	Capability, Drift Chambers			
WP3	Inner and Central Tracking with PID	438	49	
	Capability, Straw and Drift Tube			
	Chambers			
WP4	Inner and Central Tracking with PID	501	26	
	Capability, Time Projection Chambers			
WP5	Calorimetry	200	14	Cumulative information about
WP6	Photo-Detectors	538	17	resources for material and FTE
WP7	Timing Detectors	651	27	
WP8	TPCs as Reaction and Decay Chambers	943	113	projection >2027
WP9	Beyond HEP	973	58	

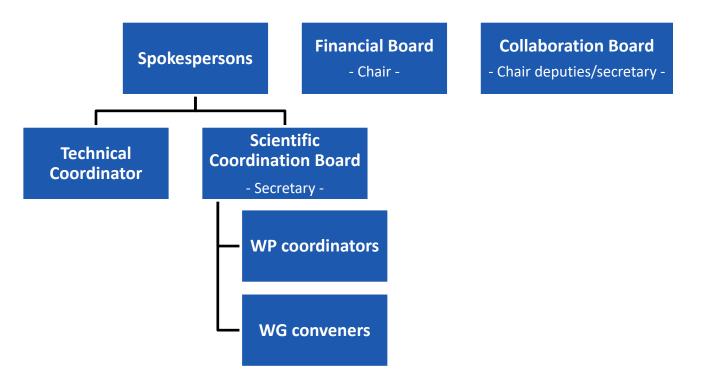
Resource envelope necessary if progress aligns with expectations by 2026, following milestones and deliverables.

Approved steps at the <u>"2nd DRD1 Community meeting"</u>, June 2023

- July 2023: Submit DRD1 Extended Proposal to DRDC after consultation.
- August 2023: Form Provisional DRD1 Collaboration Board, one representative per institute.
- September 2023: Initiate DRD1 Search Committee formation, endorsed by the Provisional Collaboration Board.
- Oct-Nov 2023: DRD1 Search Committee seeks Spokespersons and CB Chair nominations.

today

• 8 Dec 2023: open meeting where candidates for Spokespersons and CB Chair present their statements.


Afterwards, the electronic election campaign

• **29 Jan 2024:** hold the DRD1 Collaboration Meeting at CERN and establish collaboration bodies.

Collaboration bodies and management organization (proposal)

• The final DRD1 organization will be defined and approved once the elected management is in charge

Synergies with other DRDs

DRD1 recognizes the importance of synergistic collaborations with other DRDs to optimize resource utilization, avoid duplication, and enhance overall impact on detector research and development.

DRD2: Liquid Detectors - Diego Gonzalez Diaz

- ✓ Collaboration on dual-phase amplification with exploration in DRD1 for wires, meshes, and structures, and support in detector manufacturing techniques. Support for the study of liquid-phase signal induction and light amplification.
- ✓ Collaborative efforts in simulation, gas/liquid recirculation, system purification, fluid-dynamics simulations, UV-photon detection, radiopurity, and material selection

DRD4: Photon Detector & PID - Fulvio Tessarotto

- ✓ Collaborative studies on gaseous photon detectors and ecofriendly gas solutions.
- ✓ Joint work packages for detector and radiator gases.

DRD5: Quantum and Emerging Technologies - Florian

Brunbauer

✓ Exploiting synergies between advanced materials in DRD5 and DRD1's Gas and Material Studies.

DRD6: Calorimetry - Imad Laktineh

- ✓ DRD1 specializes in developing gaseous detectors for calorimeters and their performance studies (gain, timing, rate capability), eco-friendly gases. Collaboration with DRD6 on overall system issues, including services and integration.
- ✓ Collaborative Exchange: DRD6 discusses readout electronics and DAQ, facilitating potential collaboration with DRD1 groups on similar developments for diverse applications.

DRD7: Electronics and On-Detector Processing - Sorin Martoiu, Marco Bregant

- ✓ Collaboration opportunities for electronics advancements and ASIC design.
- ✓ Interest in sharing front-end building blocks and co-designing with DRD7.
- ✓ Support from DRD7 in technology access and cooperation frameworks.

Synergies with the US groups and programs

- Strong participation of the US community in the DRD1 process (25 US institutes signed the DRD1 proposal)
- US CPAD link persons: M. Titov, S. Vahsen
- US FCC/ILC: M. Hohlmann, G. lakovidis, B. Zhou
- Communication between DRD1 and US community is well-advanced

(e.g. recent DRD1 talk at the CPAD

workshop, Nov. 2023)

Summary

- **DRD1 Collaboration proposal** is a result of the great work of the Implementation Team and the whole gaseous detector community
 - <u>Implementation Team</u>: about 50 people covering all involved technologies
 - Meeting: more than 30 DRD1 Implementation Team meetings in 2023 and two large community meetings in spring and summer
 - <u>Proposal</u>: peer-reviewed internally and made continuously available to institute representatives and to the full community for reviewing and feedback during the full process.
- The DRD1 R&D framework is structured, supported, and enhanced through transversal Working Groups, which function as collaborative hubs to support the Strategic R&D initiatives undertaken by DRD1 members across different DRD1Work Packages
- The DRD1 proposal seeks to preserve and enrich the legacy of RD51 taking the advantages coming from a broader community and a wider array of technologies, facilities, tools and developments.

• DRD1 is ready and eager to start activities in January 2024

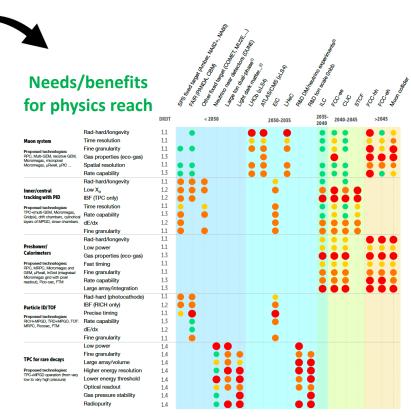
- Timely progress towards the MoU signature will facilitate the start-up of the WP and DRD1 collaboration activities
- We are looking forward to a positive review!

BACKUP

ECFA DETECTOR R&D ROADMAP CONTENT: TF1

CERN

Performance targets and main drivers from facilities


Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	RPC, Multi-GEM, resistive-GEM, Micromegas, micro-pixel Micromegas, µ-RWELL, µ-PIC	Ageing and radiation hard, large area, rate capability, space and time resolution, miniaturisation of readout, eco-gases, spark-free, low cost	(LHCb): Max. rate: 900 kHz/cm ² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm ² (10 years)
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	GEM, μ-RWELL, Micromegas, RPC	Stability, low cost, space resolution, large area, eco-gases	(IDEA): Max. rate: 10 kHz/cm ² Spatial resolution: ~60-80 µm Time resolution: O(ns) Radiation hardness: <100 mC/cm ²
Muon collider	Triple-GEM, μ-RWELL, Micromegas, RPC, MRPC	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Fluxes: > 2 MHz/cm ² (0<8 ⁰) < 2 kHz/cm ² (for 0>12 ⁰) Spatial resolution: ~100µm Time resolution: sub-ns Radiation hardness: < C/cm ²
Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)	Micromegas, GEM, RPC	High rate capability, good spatial resolution, radiation hard, eco-gases, self-triggered front-end electronics	(CBM@FAIR): Max rate: <500 kHz/cm ² Spatial resolution: < 1 mm Time resolution: ~ 15 ns Radiation hardness: 10 ¹⁰ neq/cm ² /year
FCC-hh (100 TeV hadron collider)	GEM, THGEM, μ-RWELL, Micromegas, RPC, FTM	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	Max. rate 500 Hz/cm ² Spatial resolution = 50 μ m Angular resolution = 70 μ rad (η=0) to get $\Delta p/p \le 10\%$ up to 20 TeV/c

Example: Muon systems

Detector R&D themes

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

			< 2030	2030-	2035- 2040	2040- 2045	> 2045
	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with long-term stability			-	-	
Gaseous	DRDT 1.2	Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes		•	•	*	
	DRDT 1.3	Develop environmentally friendly gaseous detectors for very large areas with high-rate capability				-	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs		\rightarrow			

Must happen or main physics goals cannot be met 👘 🛑 Important to meet several physics goals

sics goals 🛛 😑 Desirable to enhance physics reach 👘 🧶 R&D needs being met

DRD1 PILLARS

The DRD1 Collaboration aims to promote the development, diffusion, and applications of gaseous detectors, following the 3 General Strategic Recommendations (GSR) outlined in the ECFA Detector R&D Roadmap Document.

The following pillars form the foundation of this Collaboration:

- **1. Community-Driven Collaboration**: The Collaboration is driven by the community, providing a vital forum for exchanging ideas and establishing synergies to minimize duplicated efforts.
- 2. Recognition and Support for Young R&D Experts: The Collaboration will promote proper recognition and support for the careers of instrumentation R&D experts. This support will be facilitated through the member institutes and their interface with the scientific community and institutions.
- 3. Dynamic and Open R&D Environment: The Collaboration will strive to create and maintain an up-to-date, dynamic, and open R&D environment. This environment will support the development of necessary tools such as simulation and electronics, as well as the infrastructure required to undertake R&D on novel detectors and to validate their performances against the demanding specifications of future facilities and applications.

The DRD1 Collaboration aims to promote the development, diffusion, and applications of gaseous detectors, following the 3 General Strategic Recommendations (GSR) outlined in the ECFA Detector R&D Roadmap Document.

The following pillars form the foundation of this Collaboration:

- 4. Global Network and Access to Facilities: Leveraging its worldwide international network, the DRD1 Collaboration will facilitate access to testing facilities and advanced engineering support, available at DRD1 research laboratories and institutes.
- 5. Support for "Blue-Sky" R&D: The Collaboration will actively support "Blue-sky" R&D, which can lead to breakthroughs driven by technology. Common resources will be allocated, leveraging the aforementioned R&D environment.
- 6. Efficient Resource Pooling: The Collaboration aims for the most efficient pooling of resources through joint projects that will undergo international review. It will promote and support research plans that attract long-term funding, enabling the community to effectively address future technical challenges. These efforts will also help to build strong relationships between institutes and industrial partners.
- 7. Increasing Research Potential: By adding critical mass to the needs of individual institutes, the Collaboration aims to reduce research costs and enhance potential and results.

WORK PACKAGES

WP1 – Trackers/Hodoscopes

Challenges

- Extend the state-of-the-art rate capability by at least one order of magnitude
- Improve time resolution at the level of sub-ns for RPC and O(ns) for MPGD
- Enable reliable and efficient operation with suitable low-GWP gas mixtures
- Establish large-scale serial production and cost reduction procedures
- ECFA R&D tasks are all covered

Goals

- Develop and validation of RPC and MPGD-based prototypes with advantage solutions for extensive surface coverage and optimized for medium-high flow rates with associated fine granularity readout, precise tracking and timing
- Develop a new frontend and readout systems that push the detector boundaries in terms of timing, radiation resistance, and performance

One project associating different technologies

				99 ⁹ 6		Ling and manager (CMP)	000 000 000 000 000 000 000 000	to the second se
				RDT	< 2030	2030-2035	2055- 2040-204	5 >2045
		Rad-hard/longevity		11	•			
	system	Time resolution Fine granularity		11				
Propos	sed technologies: futi-GEM, resistive GEM legas, micropixel	Gas properties (eco-ga		13	•			
Morom	legas, micropixel legas, µRwell, µPIC	Spatial resolution		11				
		Rate capability		1.3				
				1				
#	Task	Performance Goal	DRD1	ECFA		Milestones/Deliverable		Institutes
T1	New RPC	- Develop low-cost re-	WGs	DRDT	12M	24M	36M	Institutes
	structures	sistive layers - Increase rate capability from 10 kHz to 1 MHz per cm ² - Improve timing reso- lution from sub-ns to ps levels	WG1, WG2,	1.1, 1.2,	M1.1 Review of De- tector Prototypes:	M2.1 Detector Proto- types Enhance-	D1 Large area RPC and MPGD pro-	INFN-BA, UniBA, PoliBA, INFN-LNF, INFN-RM2, UniRomaTOV,
T2	New Resis- tive MPGD	 Stable up to gains of O(10⁶) 	WG3,	1.3	examining the current status and	ment: building upon	totypes: design, construction, and	INFN-BO,
	Structures	 High gain in a single multiplication stage 	WG4,		future prospects of innovative resistive	the insights from M1.1. Proof of rate	test of RPC and	INFN-FE,
		 High rate capabil- ity (1 MHz/cm² and be- 	WG5,		materials, novel	capability above 100 kHz/cm ² , assessing the status and poten-	totypes [T1, T2]	INFN-NA,
		yond)	WG6,		structures, and chal- lenges in hybridizing	tial improvements	with advanced solu- tions for extensive	INFN-RM3,
		 High tracking perfor- mance (100 μm) 	WG7,		Resistive Plate Chambers (RPC)	of RPC and MPGD detectors, informed	surface coverage [T6], optimized	INFN-TO,
		- Development of low-			and Micro-Pattern	by feedback from	for medium-high	IRFU/CEA,
		granularity 2D-readout with high-tracking per-	WG8		Gas Detectors (MPGD). This	the previous phase. [T1, T2, T5, T6, T7,	flow rates (range tens kHz/cm ² - few	
		formance			evaluation includes compiling of a com-	T8]	MHz/cm ²), precise tracking (100 µm)	IFIN-HH,
T3	New Front-	- New front-end			prehensive report	M2.2	and timing (ns and	Istinye U,
	end electron- ics	 1 fC threshold High-sensitivity elec- 			highlighting compar- ative performance,	Design and Sim-	sub-ns time resolu- tion). This includes	CERN,
		tronics to help achieve stable and efficient oper-			along with the re- spective advantages	ulation studies of new ASIC: Building	considerations for the compatibility of	CIEMAT
		ation up to ≈MHz/cm ²			and disadvantages of	blocks for MPGD	eco-friendly gases.	
		 High granularity detector capability 			available technolo- gies. [T1, T2, T5,	and RPC and tech- nical note(s) about	[T5, T7]	LMU,
T4	Optimization	- Front-end link con-			T6, T7, T8]	the chips expected performance. [T3]	D2	WIS,
14	of scalable	centrator to a power-			M1.2		New frontend	Wigner,
	multichannel readout sys-	ful FPGA with possibil- ities of triggering and			Review of the status	M2.3	and DAQ systems: completion of the	U Kobe,
	tems	≈20 GBit/s to DAQ for high-rate experiment			of the art of ASICs	Design of a novel	innovative ASICs'	U Cambridge,
		-Develop robust, com-			and DAQ systems, and definition of	readout system for Gaseous Detec-	final design; com- pilation of compre-	
		pact, and low power DAQ for low-rate exper-			the requirements for next-generation	tors: assessment of performance	hensive production documentation; if	USTC,
		iment			laree area muon	achievements based	applicable, initiation	U Oviedo,
Т5	Eco-friendly	- Guarantee long-term			systems. [T3, T4]	on DAQ modelling. [T4]	of the engineering run for the first chip,	UNSTPB,
	gases	operation - Explore compatibility					should it be in an advanced stage [T3].	UTransilvania,
		and optimized operation with low-GWP gases					DAQ system proto- typing for gaseous	VUB and UGent,
T6	Manufacturing	Technological transfer					detectors, aiming to push the boundaries	U Genève.
10	manufacturing	for cost-effective pro-					in terms of timing,	
		duction of high-quality, high-performance large					radiation resistance, multi-channel high	U Hong Kong,
		area resistive MPGD.					rate acquisition and	MPP,
		 Reliable production of homogeneous resis- tive large DLC foils 					performance, for large systems [T4].	BNL,
		tive large DLC foils with the CERN-INFN						FIT,
		sputtering machine						JLab.
T7	Longevity on	- Study discharge rate						MSU,
	large detector areas	and the impact of irra- diation and transported						
		charge (up to C/cm ²) - Study the impact of						Tufts,
		 Study the impact of low-GWP gases and new materials on high 						UC Irvine,
		radiation hardness envi-						U Florida,
T 8	New Hybrid-	- Development of new						U Massachusetts, Amherst,
	multi- technologies	ideas of detector struc- tures and hybridization						U Michigan,
	Structures							UW-Madison, IGPC

AN T

Institutes

• 39 institutes from 17 countries

TASK										
Institute	T1	T2	Т3	T4	T5	T 6	77	T 8		
INFN-BA	Х				х		Х			
INFN-BO		х	х							
INFN-FE		х	х	х				х		
INFN-LNF	Х	Х			х	х	х	х		
INFN-NA		х				х	х			
INFN-RM2	х	х	х		х	х	х	х		
INFN-RM3		х				х	х			
INFN-TO			х							
Kobe	х	х								
CERN		Х	х	X	х		х			
U. Cambridge	х				х		x			
LMU		X								
ICTEA U Oviedo			х							
CIEMAT			х							
Wigner RCP			X			х	х			
Max Plank								X		
Univ of Geneva								X		
Hong Kong								X		
Weizmann		X					х			
IRFU		Х	х							
USTC		Х						х		
VUB					х					
IFIN-HH		Х	х	х						
UNSTPB		х	х	х						
UniTBv			х	х						
ISU	X		х	х	х		х			
e+e- US Cluster	X		х	X	х	х	х			
IGPC - Belgrade					х		х			

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP1	Trackers/Hodoscopes	651	516	501	47.45	50.9	50.7

Additional (not existing)

W	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP	Trackers/Hodoscopes	716	1040	670	21.8	23.55	23.55

WP2 – Drift Chambers

Challenges:

- Development of front-end ASIC for cluster counting/a scalable multichannel DAQ board
- New wiring procedures and new endplate concepts
- · Consolidation of new wire materials and wire metal coating / ageing phenomena
- Increase of the rate capability and granularity
- Optimization of gas mixing, recuperation, purification and recirculation systems

Goals:

- Achieving efficient cluster counting and cluster timing performances by using FPGA based architecture
- Completion of a cylindrical sector of a full length drift chamber prototype aimed at testing all mechanical properties.
- Performance of K-p separation in the momentum range from 2 to 30 GeV/c based on a scalable front-end/digitizer/DAQ electronics chain for cluster counting.

		DRDT			<	< 2030	2030-2035	2035- 2040	2040-2045	>2045
	Rad-hard/longevity	1.1					•			
Inner/central	Low X _o	1.2	•	۲			•			
tracking with PID	IBF (TPC only)	1.2	۲	۲					Õ O Õ	
Proposed technologies:	Time resolution	1.1	ē				•	ē	ë ë ë i	
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability	1.3	۲				•	•	• • •	
layers of MPGD, straw chambers	dE/dx	1.2	۲				•	•	• • •	
	Fine granularity	1.1	۲				•		Ö Ö Ö	

			DRD1	ECFA		Milestones/Deliverable		
#	Task	Performance Goal	WGs	DRDT	12M	24M	36M	Institutes
TI	Front-end ASIC for clus- ter counting	 High bandwidth High gain Low power Low mass 	WG1,	1.1,	M1.1	M2.1	D1	CNRS-
T2	Scalable mul- tichannel DAQ board	 High sampling rate Dead-time-less DSP and filtering Event time stamping Track triggering 	WG2, WG3, WG4, WG5,	1.2, 1.3	At least 80% effi- ciency of the cluster counting/timing with resolution in dn/dx smaller than 30% for a single hit. [T1]	Completion of the mechanical design of the full length drift chamber prototype. [T3] M2.2	Realization of a scalable front- end/digitizer/DAQ electronics chain for cluster count- ing/timing. [T1-T2]	IN2P3/IJCLab, INFN-BA, UniBA, PoliBA, INFN-LE, INFN-RM1,
T3	Mechanics: wiring proce- dures, new end-plate concepts	 Feed-through-less wiring procedures More transparent end-plates (X < 5%X₀) Transverse geometry 	WG7		M1.2 Design of the frontend ASIC optimized for cluster counting. [T1]	Validation of the tension recovery scheme. [T3]	D2 Performance of <i>K</i> -π separation in the momentum range from 2 to 30 GeV/ <i>c</i> .	U Massachusetts, Amherst, U Michigan, UC Irvine,
T4	High rate High granular- ity	 Smaller cell size and shorter drift time Higher field-to-sense ratio 					[T1-T2]	Tufts, BNL, FIT,
TS	New wire materials and wire metal coating	Electrostatic stability High YTS Low mass, low Z High conductivity Low ageing	-					U Florida , UW–Madison, U Nankay,
T6	Study ageing phenomena for new wire types	 Establish charge- collection limits for carbon wires as field and sense wires 						U Tsinghua, IHEP CAS, U Wuhan,
17	Optimize gas mixing, recuperation, purification and recircula- tion systems	Use non-flammable gases Keep high quenching power Keep low-Z Increase radiation length Operate at high ioniza- tion density						U Jilin, USTC, IMP-CAS, Bose

WP2 – Drift Chambers

Institutes

- 20 institutes in 5 countries
- All R&D tasks covered

	Tasks										
Institute	T1	T2	Т3	T4	T5	Т6	T7				
IJCLab-IN2P3			х	х	x	х					
INFN-BA	х	x	x	x	x	x	x				
INFN-LE	х	х	х	х	x	x	x				
INFN-RM				х	x	х	x				
US Cluster	х		х				x				
Nankai U				x							
Tsinghua U	х										
IHEP-CAS	х		х	x			x				
Wuhan U				x							
Jilin U				x							
USTC				x		х					
IMP-CAS				х		x					
Bose						x	х				

Existing

	•						
WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP2	Inner and Central	394	163	167	19.45	21.45	23.45
	Tracking with PID						
	Capability, Drift						
	Chambers						

Additional (not existing)

[WP	Description	Material	Material	Material	FTE	FTE	FTE
			[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
			(2024)	(2025)	(2026)			
ĺ	WP2	Inner and Central	79	89	93	3.15	8.4	9.15
		Tracking with PID						
		Capability, Drift						
		Chambers						

WP3 – Straw and Drift Tube Chambers

Challenges and goals

- Straw tube wall film thickness < 20μ m for low X/X0 < 0.04% per straw
- Straw diameter ≤ 5mm for high rate capability of O(100 kHz/cm²)
- Straw length up to 4m with thin film tube walls
- Extending tracking information to 4D (3D-space and T0) and dE/dx for PID
- ASIC design for high-resolution leading-/trailing edge time and charge readout
- Very large straw detector volumes of O(10m³) and in vacuum
- Extending detector longevity by increasing material purity
- Developing new production techniques, like ultrasonic film tube welding to minimize the usage of glue

List of projects

- 1. Drift tube developments for high-rate applications (e.g. at FCC-ee/hh)
- 2. Straw chamber technologies for hadron physics applications (e.g. 4D+PID, low X0, ..)
- 3. Large area straw detector for Dark Sector applications (e.g. 4m ultra-long straws)
- 4. Straw chamber technologies for neutrino physics applications (e.g. low X0, large area)
- 5. Optimization of straw materials and production technologies (e.g. standardizing, ..)
- 6. Optimization of electronic readout (new ASIC designs, versatile applications, ..)

			~				~	~	~	~	~	· ·	·	~		~	~		-
		DRDT			<	2030				2030	-2035			2035- 2040	20	40-2	045	>2045	
	Rad-hard/longevity	1.1	•							•				•		•			
Inner/central	Low X _p	1.2	Ó	Ó	i é									•		٠			
tracking with PID	IBF (TPC only)	1.2	ē	ē										ŏ	ŏ	ŏ	ŏ		
Proposed technologies:	Time resolution	1.1	ē	1										ē	ē	ē	ē		
TPC+(multi-GEM, Moromegas, Gridpix), drift chambers, cylindrical	Rate capability	1.3	Ó		Ó					ē					ĕ		ē		
layers of MPGD, straw chambers	dE/dx	1.2	Ő							Ő				ē	Ó	ē			
	Fine granularity	1.1	ē							ē				ē	ŏ	ē	ē		

Г	#	Task	Performance Goal	DRD1	ECFA		Milestones/Deliverable		Institutes
H		Optimize	- Thin film materials	WGs	DRDT	12M	24M	36M	montaito
		straw ma- terials and production	 Film metallization Low cross-talk Resistance to ageing 	WG1,	1.1.	мі	M2.1	D	GTU,
		technologies	- Production techniques	WG2,	1.1,	Work plan con- solidation: finalise	Prototype design and construction:	Prototype tests and results: perfor-	FZJ-GSI-U Bochum,
		Develop straw tubes of 5mm diameter	 Thin film wall Fast timing < 100 ns Rates ≃ 50 kHz/cm² 	WG3, WG4,	1.2,	work package ob- jectives and decide final straw designs including simulation	optimization of straw materials, designs and produc- tion technologies	mance of prototype designs and mea- surement resolutions (3D-space <150 µm,	U Hamburg, MPP.
	т2	Develop straw with ultra-thin film walls	 Film wall < 20 µm X/X0 ≃ 0.02% / straw Film metallization 	WG5, WG6,		studies. Setting up laboratories, production and test	for low radiation length, thin-wall tubes, small diame-	(3D-space C130 µm, time t0 of O(1 ns), dE/dx < 10%). [T1- T7]	IITG,
		Develop ultra- long straws with thin film walls	 - 4-5 m tube length - Film walls < 30 μm - Good mechanical properties 	WG7, WG8		facilities. Tendering and procurement of materials. [T1-T7]	ter tubes, long tubes and straws with enhanced longevity. [T1-T3, T6]	Evaluation of WP tasks with review of further enhancement and new potential.	IITK, NISER Bhubaneswar,
		Develop	- Diameter < 4mm				M2.2	[T1-T7]	U Delhi,
		straws with ultra-small diameter	 Rates > 500 kHz/cm² Fast timing <50ns Charge load >10 C/cm 				Optimization of the prototype me- chanical system with low material		U Punjab, INFN-TO,
ŀ	T3	Optimize the detector	 Develop self- supporting modules 				budget and high me- chanical precision.		INP-Almaty,
		mechanical system	- Control material relax- ation				Development of the alignment method.		JU-Krakow,
			 Straw alignment method 				[T3, T5, T7] M2.3		IFIN-HH, CERN,
	Т4	Optimize the front-end elec- tronics (ASIC) and readout system	Leading and trailing edge time readout Charge readout Time readout with sub- ns precision				M2-3 Optimization of front-end electronic and ASIC design based on existing ASICs and simula-		U South Car- olina, U Duke,
ŀ	т5	Enhance the tracker mea-	 Spatial resolution < 150 µm 				tion studies for fast timing, signal lead-		BNL,
		surement	 Time t0 extraction with O(ns) resolution 				ing and trailing edge time readout with		FIT,
		(3D/4D and PID via dE/dx)	 dE/dx resolution <10% p/K/π-separation 				high resolution and charge measurement		JLab,
┝	T 6	Enhance	Ageing resistance up to				for PID. [T4, T5]		U Massachusetts, Amherst,
		the detector longevity	 1 C/cm for thin-wall straws >10 C/cm for straws 						U Michigan,
			for highest particle rates						UC Irvine,
ľ	17	Optimize the online-/offline	 Straw tube simulation Straw calibrations 						UW-Madison,
		software	 Tracking simulation Pattern recognition Tracking and PID Tracker alignment 						Tufts
L									

WP3 – Straw and Drift Tube Chambers

Funding comments

- Existing: excl. already spent costs of materials, infrastructures, devices..
- Additional: planned funding applications in 2023/24

Institutes

- 26 institutes in 9 countries
- All R&D tasks covered (T1-T7)

				Tasks			
Institute	T1	T2	T3	T4	T5	T6	T7
CERN	х	x	x				
FZJ			x	x	x		х
GSI					x		х
GTU	x	x	x		x		
IFIN-HH			x	x	x		х
IITG	x	x	x	x	x		х
ІІТК				x	x		
INFN-TO				х			
INP-Almaty	x	x	x	x	x	x	х
JU Krakow		x				x	
MPP	x	x	x	x	x		
NISER	x		x				
RU Bochum			x	x	x		х
U Hamburg	x	x	x			x	
U Punjab	x		x	x			
U South Carolina		x	x	x	x		x
U Duke		x					
U Dehli	x	x		x			
BNL				x			
FIT				x			
JLab				x			
U Mass. Amherst				x			
U Michigan	х	x	x	x			
UC Irvine				x			
U Wisconsin				x			
Tufts Uni	x	x	x				

Existing

	_						
WP	Description	Material	Material	Material	FTE	FTE	FTE
	_	[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP3	Inner and Central	163.5	70	65	32	37.3	40.3
	Tracking with PID						
	Capability, Straw and						
	Drift Tube Chambers						

Additional (not existing)

[WP	Description	Material	Material	Material	FTE	FTE	FTE
			[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
			(2024)	(2025)	(2026)			
	WP3	Inner and Central	525	325	330	11.7	12.9	12.9
		Tracking with PID						
		Capability, Straw and						
		Drift Tube Chambers						

WP4 – Tracking TPCs

Challenges and goals

- High rate,
- Low mass,
- Granularity,
- dE/dx & cluster counting
- Ion backflow suppression,
- Gas mixture optimization and Eco gas mixtures

Single WP project

 Inner/central
 Low X₀

 tracking with PID
 UBF (TPC only)

 Proposed technologies:
 Tracking with PID

 Tracking with PID
 Bit me resolution

 Gradu, dirf dirfners, optical
 Rate capability

 upon dit#Col, trave dirents, optical
 Grady, dirfners, optical

 Upon direct dire

	25 840 14 14 14 14 14 14 14 14 14 14 14 14 14 1	Len and an and a second of the	Par Outing and a contract of the contract of t	ل ک ر ج س س س س س
DRDT	< 2030	2030-2035	2035- 2040-2045	>2045
1.1	•••	•	• •	
1.2		•		
1.2	••			
1.1	• •	•		

ĕ

#	Task	Performance Goal	DRD1	ECFA		Institutes		
			WGs	DRDT	12M	24M	36M	institutes
T1	IBF reduction	 Reduce IBF in case of gated operation Reduce IBF in case of 	WG1,	1.1,	M1	M2.1	D	IFUSP,
		ungated operation	WG2,	1.2,	Evaluation of various readout	Improvement of dE/dx perfor-	Prototype TPC A small scale pro-	U Carleton,
T2 T3	pixeITPC development	 Develop different tech- nologies for pixelized 	WG3,	1.3,	technologies: stud- ies of various gas	mance: experimen- tal tests to optimize	totype detector with good spatial and	IHEP CAS,
		readout - Build small prototypes	WG4,	1.4	amplification and readout technologies	the dE/dx resolution in various gas mix-	dE/dx resolution to fulfil the require-	U Tsinghua,
		to verify spatial resolu- tion	WG5,		including pixelised structures to estimate	tures.[T1, T2, T5]	ments of future accelerators with	HIP,
		- Study dE/dx resolution	WG6,		their potential per- formance in a TPC.	M2.2	a gated or ungated operation mode of	U Jyväskylä,
	Optimization of mechanical	 Reduce material bud- get of mechanical and 	WG7		[T1, T2, T4, T5]	Improvement of IBF performance:	the TPC. [T1-T5]	IRFU/CEA,
	structure	electrical field cage - Reduce material bud-				experimental tests to reach an IBF		TUDa,
		get of the endcap, in par-				performance optible		U Bonn,
		ticular, the cooling in- frastructure				with gain×IBF < 5. [T1, T2, T5]		GSI,
T4	FEE for TPCs	- Develop a low-power				M2.3		Wigner,
		ASIC for TPC readout - Implement a readily available ASIC, which				Electronics im- plemented in the		INFN-BA, UniBA, PoliE
		fulfils MPGD-TPC requirements in the				SRS and ready for operation with small-scale proto-		INFN-RM1,
		Scalable Readout Sys- tem - Increase the readout				small-scale proto- types. [T4]		U Iwate,
		rate of TPC-readout						CERN,
		with SRS						PSI
T5	Gas mixtures	 Study drift properties of gas mixtures to find low diffusion gases Study gases with low ωτ for improved performance of TPCs in magnetic fields Study eco-friendly 						

1.3

12 🦲

11

WP4 – Tracking TPCs

Institutes

- 16 institutes in 10 countries
- All tasks covered

	Tasks						
Institute	T1	Т2	Т3	T4	T5		
USP				x			
U Carleton	x	x					
IHEP-CAS	x	x		x	x		
U Tsinghua				x			
HIP	x		х		х		
U Jyväskylä	x						
IRFU/CEA	x			x			
U Bonn	x	x	x		x		
TU Da	x		x				
GSI	x			x	x		
RCP	x						
INFN-Bari			x		x		
INFN-Roma1	x	x					
IU	x		х				
CERN		x					
PSI	x	x					

Existing

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP4	Inner and Central	268	268	253	15	15	14.5
	Tracking with PID						
	Capability, Time						
	Projection Chambers						

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP4	Inner and Central	238	238	238	11.3	11.3	11.3
	Tracking with PID						
	Capability, Time						
	Projection Chambers						

WP5 – Calorimetry

Challenges

- Realization of thin and large surface detectors with high efficiency, excellent uniformity and high-rate capabilities operated with eco-friendly gases
- Very good time resolution
- Embedded readout electronics

Goals

 To provide high granular hadronic calorimeters with active media made of gaseous detectors to efficiently apply the PFA techniques and at the same time provide good energy resolution

One project associating different technologies

		capability arrav/integra	ation	1.3 1.3			
	Luge	anayintogr		All C			
Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable 24M	36M	Institutes
Conception, construction and charac		WG1,	1.1,	M1	M2.1	D1	IP2I,
terization of large samplin	g settes and possible cool-	WG2,	1.3	Construction of medium-sized	Uniformity study including efficiency	Performance and uniformity studies	CIEMAT,
elements fo calorimeters	- Uniformity in terms of	WG4,		gaseous detector fulfilling the require-	and cluster size distribution with	of the large and thin detectors of different	VUB and UGent,
	thickness, resistivity and gas circulation	WG7		ments on efficiency and small dead	medium-size de- tectors. Expected	technologies. Perfor- mance goals in terms	GWNU,
				zones. [T1]	timing performance better than 3 ns in	of: - detector unifor-	SJTU,
Timing per		ł			the case of MPGD, 0. ns for RPC and	mity: < 10% in terms of efficiency	MPP,
formance of gaseou					0.15 ns for MRPC with 4 gaps. [T2]	an in terms of cluster size [T1],	WIS,
detectors fo calorimeters	r detector response in terms of timing					 time resolution below few ns [T2], 	INFN-BA, UniBA, PoliBA,
					M2.2	 high detection rate capabilities up to a 	INFN-RM3,
					Construction of large and thin de-	few kHz/cm ² [T4], to be obtained with	INFN-NA
Readout elec	Low-iitters readout	ł			tectors (few mm) of different technolo-	different kinds of gas mixtures.	INFIN-INA
tronics fo calorimeter					gies (MRPC, RPC,		
gaseous detec					MM, µRWELL, RPWELL) with	D2	
1013	(ASU) of large size with good flatness				small dead zones (< 2% dead zone).	The readout electronics [T3]	
	good namess				We propose to build detectors larger than	associated with pickup pads of the	
	III I I III	ļ			$50 \text{ cm} \times 50 \text{ cm} \text{ in}$ the case of MPGD	order of 1 cm ² : - threshold down to	
High-rate capability gaseous de	 High-rate capability exceeding a few KHz 				and larger than 100 cm \times 100 cm for	a few fC for MPGD and tens of fC for	
tectors for cir	tens of KHz in case of				(M)RPC, featuring dead zones $< 2\%$.	(M)RPC - time resolution	
cular collide calorimeters	- Impact of high particle				The detectors should feature an efficient	better than 100 ps	
	rate on the detector performance (efficiency,				gas circulation to be used as active		
	spatial resolution, tim- ingetc)				layers in granular calorimeters. [T1]		

DRDT

1.1

1.1

1.3

1.1

Rad-hard/longevity

Gas properties (eco-gas)

Low power

Fine granularity

#

T1

T2

T3

T4

WP5 – Calorimetry

Existing

WP	Description		Material			FTE	FTE
		[kCHF] (2024)	[kCHF] (2025)	[kCHF] (2026)	(2024)	(2025)	(2026)
WP5	Calorimetry	150	150	150	12.75	12.75	12.75

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP5	Calorimetry	50	50	50	1	1	1

Funding comments

available

- 10 institutes from 8 countries
- Most of all are also involved in DRD6 (calorimetry)

• The foreseen developments on detectors is already available or almost sure to be

performant ones need to be produced in common with other WPs in DRD1 and DRD6.

· Existing readout electronics could be used to characterize but new and more

 Most of them have already worked together on a given technology but in this proposal, common studies will be an essential feature

	Tas	ks			ľ
Institute	T1	T 2	Т3	T4	
IP2I	x	x	x	x	
CIEMAT			x		
VUB	x				
GWNU	x	х			
SJTU			x		
MPP	x	х			
WIS	x	x		х	
INFN-BA		x		x	
INFN-RM3				х	
INFN-NA				x	

institute

WP6 – Photo-detectors

Challenges and goals

- Gaseous Photo-Detectors:
 - $\circ \ \ \, \text{Large area}$
 - $\circ \ \ \text{Low cost}$
 - Low material budget
 - Magnetic insensitivity
- Hadron identification at colliders + other applications

> Improve performance

> Explore visible gaseous PDs

		DRDT			< 2030	2030-2035	2035- 2040	2040-20
	Rad-hard (photocathode)	1.1				•		
Particle ID/TOF	IBF (RICH only)	1.2				•		
Proposed technologies:	Precise timing	1.1				•		
RICH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3		5		ĕ		
MRPC, Ploosec, FTM	dE/dx	1.2						
	Fine granularity	1.1				•		

#	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable 24M	36M	Institutes
TI	Development of robust UV photoconvert- ers for gaseous photon detec- tors	 Robustness against ac- cumulated charge dose: 20% deterioration of quantum efficiency for 100 mC/cm² 	WGs WG1,	1.1,	12M	24M M2	36M	AUTH,
T2	Increase the photon detec- tion efficiency	 Photoelectron effi- ciency in gas ≥ 75% of that under vacuum 	WG2, WG3,	1.2, 1.3	Design and produc- tion of small-size photon detector prototypes, e.g.	Results of simu- lations and mea- surements of IBF suppression [T7 ,	Demonstrator prototypes for Large area Double Micromegas [T8],	USTC, NISER Bhubaneswar,
Т3	Suppression of ion feed- back to the photocathode, increase of stability and longevity	- Stable detector opera- tion at 10^5 gain. - IBF reduction down to 10^{-4} - Stable operation in harsh environment $(10^{11} n_{eq}/cm^2)$	WG4, WG5, WG6, WG7		THGEM + Mi- cromegas equipped with hydrogenated nanodiamond pho- tocathode [T1], PI- COSEC Micromegas equipped with novel photocathodes [T6],	T3], photocathode robustness [T1], a test of small-size prototypes [T2, T5] and new readout development, with low noise at low input capacitance	Space resolution < 1 mm [T5], Time resolution < 200 ps [T6], IBF < 1%. Test bench for visible sensitive pho- tocathodes studies	CERN, WIS, INFN-PD, DFA-UNIPD,
T4	Develop gaseous pho- ton detectors sensitive to visible light	 Sustained photosensi- tivity to visible light in gaseous photon detec- tors 			Double Micromegas photon detectors [T3], etc. to test the proposed technolog- ical improvements.	[T 9].	[T4]. D2 Report on novel robust photocathode	INFN-TS, HIP, U Aveiro,
T5	Increase spa- tial resolution and readout granularity	 Spatial resolution ≤ 1 mm 					performance [T1] and PDE achieve- ments [T2]. D3	MSU, TUM
T6	Increase time resolution	 Time resolution ≤ 100 ps 					New ASIC chip prototype integration	
T7	Modelling and simulation of gaseous pho- ton detectors	- Accurate simulation of IBF to the photocath- ode, gain and stability					[T9].	
T8	Large area coverage	- Gain and QE variation $\leq 10\%$ over 1 m ² area with $\leq 10\%$ dead area.						
Т9	Readout elec- tronics for sin- gle photon sig- nals	New frontend ASIC chip with 64 channels, ENC 0.5 fC at 20pF						

WP6 – Photo-detectors

Existing

Γ	WP	Description	Material	Material	Material	FTE	FTE	FTE
			[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
			(2024)	(2025)	(2026)			
	WP6	Photo-Detectors	275	325	315	11.9	11.4	11.4

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
	_	[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)		ļ	
WP6	Photo-Detectors	180	270	250	4.6	5.1	5.6

Institutes

- 11 institutes from 10 countries
- All tasks covered

	Tasks										
Institute	Τ1	Т2	Т 3	T 4	T 5	T 6	T 7	Т 8	Т9		
AUTh			х			х		х			
USTC	х		х	х	х	х	х	х	х		
NISER	х	х	х		х	х	х	х	х		
CERN	х	х				х	х		х		
WIS		х	х	x			х				
INFN-PD	х	х	х		х		х		х		
INFN-TS	x				x	х		x	x		
HIP			x	x		х					
Aveiro	х	х	х		х		х	х	х		
FRIB		х	х	х			х	х	х		
TUM	х		х								

WP7 – Timing Detectors

Challenges

- Eco-friendly gases: decreasing availability, increasing cost of GH gases
- Detector ageing: operational instabilities/ageing in harsh environments,
- Front end electronics: timing performance, low power, robustness

Goals

- Development of scalable precise timing detector with operational stability and long term robustness
- High-rate capability and spatial resolution with suitable FE electronics for the required readout granularity

Two projects based on different technologies

- Project A High-rate, high-granularity precise timing with MPGDs
- Project B High-rate, large, precise timing (M)RPC

			DRD1	ECFA		Milestones/Deliverable		
#	Task	Performance Goal	WGs	DRDT	12M	24M	36M	Institutes
TI	Optimize the amplification technology towards large- area detectors	 Uniformity over m² (time resolution, rate capability, efficiency) 	WG1,		M1.1	M2.1	D	AUTH ,
T2	Enhance timing perfor- mance	- Time resolution < 50 ps up to 30 kHz/cm ²	WG2, WG3,	1.1, 1.3	Prototypes re- view (proof of concept, enhancing time resolution,	Prototypes suit- able for large area coverage systems review: status and	Prototypes with time resolution below 200 ps based on RPC/MRPC and	CERN, CIEMAT,
Т3	Enhance rate capability	- Time resolution < 200 ps up to 100- 150 kHz/cm ²	WG4, WG5,		active area of about 100 cm ²): status and perspectives. [T1, T2, T5, T10]	perspectives. [T1, T3, T10] M2.2	MPGD technolo- gies: demonstrate the scalability of the technologies	CNRS- IN2P3/Omega, DGIST,
T4	Spatial resolu- tion and read- out granularity	 Spatial resolution of mm with low number of readout channels 	WG6, WG7		M1.2 Common activi-	Multichannel readout electronics: evaluation (on small	targeting m ² size coverage. Prototypes will be characterized in terms of time	GWNU, HYU,
T5	Stability, ro- bustness and longevity	- IBF <1% with <100 ps time resolution for sin- gle photoelectrons - Stable, high-gain oper- ation			ties and material studies: Support and development of modelling and simulation (time resolution, rate	prototypes, 100 cm ² active area) of dif- ferent multichannel readout solutions. [T9]	resolution, rate capability, space resolution, efficiency and multi-hit re- sponse. Different examples of mul-	HIP, INFN-BA, UniBA, PoliBA,
T6	Material stud- ies	 Radiation-hardness Longevity 			capabilities) tools and testing facilities (time resolution,		tichannel readout electronics will be provided. [T1, T3,	INFN-PV, UniPV, UniBG,
Τ7	Gas studies for precise timing applications	Eco-friendly mixtures Recuperation Ageing mitigation CO ₂ -based mix- ture with geometrical quenching			rate capability, space resolution, gas and material studies). [T3, T4, T6, T7, T8, T11]		T4, T5, T9, T10] Guidelines for future develop- ments: At the end of the three years, de-	INFN-RM2, UniRomaTOV, IRFU/CEA, IP2I,
T8	Modelling and simulation of timing detec- tors	 Accurate modelling of charge transport and signal induction pro- cesses in precise timing detector geometries 					velopment directions will be summarized based on future facil- ities' requirements and the achievable performances of the studied solutions.	JLab, LIP-Coimbra, MPP,
19	Readout elec- tronics for pre- cise timing	- Low-noise FEE - High input capaci- tance - Large dynamic range - Fast rise time - Sensitivity to small charges - Multi-channel readout solution for timing de- tectors					Status and Startaegies towards the use of sustainable gas mixtures will be given. [17]	RBI, SIAT, SJTU, U Heidelberg, U Kyoto, U Tsinghua,
T10	Precision me- chanics and construction techniques	 Precise mechanics (μm) over relatively large active areas (hun- dreds of cm²) 						USTC, VUB and UGent
TH	Common framework and test facilities for precise timing R&D	- Test bench for precise timing studies	1					

WP7 – Timing Detectors

Institutes

- In total: 26 institutes from 14 countries
- Project A: 9 institutes from 9 countries
- Project B: 17 institutes from 10 countries

$\left(\begin{array}{c} \\ \end{array} \right)$
(CÉRN)
CERINAY

Existing

	-						
WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP7	Timing Detectors	420	311	311	24.1	21.7	20.7

(A) High-ra	ate, l	high	-grai	nulai	rity p	oreci	se ti	min	g wit	h MP	GDs
Institute	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11
AUTh		x	x		x	x	х		х	x	
IRFU/CEA	x	х			x	x					
CERN	x	х	x	х	x	x	х		х	х	
INFN-PV	x	x	x			x	х			x	
JLab	x	x		х						x	
RBI		х				x					
USTC	x	x			x						
LIP		x						x	х		
HIP	x	х	x		x						

(B) High-r	ate, ł	nigh-	granı	ularit	y pre	cise	timin	g wit	h MI	PGDs	
Institute	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11
IP2I		x		x		х			x		
CIEMAT		x		x							x
VUB		x		x							х
GWNU				х							х
SJTU				х					x		
OMEGA				x					x		
U Heidelberg			x	x							
Kyoto U				х							х
LIP		x		x				x		х	
Tsinghua		x	x	х		х					
SIAT-CAS				х							х
DGIST				x					x		
MPP				х	x					x	
INFN-Bari		x		x	x						
INFN-RM2		x		x	x						
Hanyang U				x	x						
CERN				x	x		x				

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP7	Timing Detectors	257	307	346	3	5.5	6.9

WP8 – TPCs as Reaction and Decay Chambers

Fundamental challenges:

- Achieving track-reconstruction of low-energy nuclei and electrons, at granularities going from a few mm down to potentially tens of um and close to the thermal diffusion limit. [T1, T2, T4]
- Operating in a broad range of pressures going from a few tens of mbar to tens of bar, with energy-reconstruction performing generally down to ~1keV threshold if not less. [T2, T3]
- Achieving high and uniform amplification in nearly pure or weakly-doped noble gases. [T3]
- Increasing optical throughput (primary and secondary). [T1, T4, T5, T6]
- Developing more suitably scintillating and/or eco-friendly gas mixtures as well as recuperation systems. [T1, T5, T6]
- Enhancing the radiopurity of the amplification structure and of the TPC as a whole. [T7]

Four projects:

- A High-Pressure TPCs for precision studies of neutrino interactions.
- B TPCs for low-energy nuclear physics.
- C Electroluminescence-based TPCs for Rare-Event Searches and other R&D on pure noble-gas amplification.
- D Radiopure TPCs for precise track imaging and/or calorimetry with avalanche-based readouts.

			DRDT		< 2030	2030-2035	2035- 2040-20	15 >2045	
		Low power	1.4				2040		
		Fine granularity	1.4						
TPC for rare	decays	Large arrav/volume	1.4		i i i i	- i i i i i i i i i i i i i i i i i i i	i i i i i i i i i i i i i i i i i i i		
Proposed tecl	inologies:	Higher energy resolution	1.4						
TPC+MPGD op low to very high	eration (from very	Lower energy threshold	1.4			_			
	processor	Optical readout	1.4			_			
		Gas pressure stability	1.4			· · · · · · · · · · · · · · · · · · ·			
		Radiopurity	1.4						
		nadiopunty	1.4						
			DRD1	ECFA		Milestones/Deliverable			
+		Performance Goal	WGs	DRDT	12M	24M	36M	Institutes	
	Enhanced construction const	gas interactions. interactions. - Large areas at 52 30 m - 2 30 m - 107 - 30 optical gas 2 30 m - 107 - 107 - 107 <	WG1, WG2, WG3, WG4, WG6, WG7	LL, 12, 13, 14	M1.1 Review and de- sign: review of TFC technologies preparties: data signormanic status and perspectives; de- signormanication to the signormanic status and tuning of modelling and tuning of dataset. development and/or tuning of modelling and tuning of dataset. development and/or tuning of modelling and tuning of dataset. development and/or tuning of modelling and tuning of the status and tuning of tuning of tu	AND M2.1 Construction of prototypes tart construction of construction of structure of the transformer of the transformer of the transformer of the transformer of the coverage. [11:17] M2.2 Characterization of key technologies dectonics, ampli- fication structures behaviour in small R&D chambers, comparison with simulations. [17]- 17]	D1 TPC commis- soning and proof of principle demon- soning and proof of principle demonstration to the second second second second responses of the second second second second second second second second responses of the second second second second responses of the second second second second second responses of the second second second second second second responses of the second se	ANU, Auto-CeNT, CTERN, DIPC, Fermilab, GANIL, CNRS- Bargentol, Bargentol, Bargentol, Bargentol, UBom, HUL, UBom, RHUL, UBom, RHUL, UBom, KTH Aushen, STFC-RAL, UBom, FAT, UBom, FAT, UBom, RHUL, UBom, BAT, DIPC- Bargentol, NN-PD, DFA- UNIPD, DIPS- Bargentol, NN-PD, DFA- UNIPD, DIPS- BARG, BARGENT, CALL, DIPC, DIPS- Contento.	
_	struction highly	of 10-100 keV) with good PID. acks - High dynamic range for the reconstruction of on low and highly ionizing particles. Corron count- ing, and diffusion at the thermal limit. - Develop new gascous scintillators, compara- ble or better than GTa, - Decomparation of Ta- determination for low-	_					LIP-Coimbra, MSU, SINP Kolkata, U Aveiro, U Coimbra, U Genève, U Hamburg, UH Manca, U Indiana,	
	 '6 Microscop gas prope and gas dling '7 Radiopurit 	rities and technology of novel han- confriendly gases. - Derive microscopic pa- rameters for new gases. y - Background levels be- low 10 ⁻⁶ c/keV/cm ² /s for axion research and at least ×10 more radiop- ure cameras.	-					U Kobe, U Liverpool, U Bursa, U New Mex- ico, UPV, U Vigo, U Warwick,	
		 New radiopure ampli- fication structures and techniques. 						CAPA, IFIC	

WP8 – TPCs as Reaction and Decay Chambers

Institutes

44

- A 15 institutes in 7 countries
- B 8 institutes in 6 countries
- C 9 institutes in 4 countries
- D 15 institutes in 11 countries

Institute	T1	T2	Т3	T4	T5	Т6	T7
RWTH Aachen						х	
U Indiana		х				x	
U Geneva			х				
IFAE			х				
U Liverpool	x		х				x
RHUL		х					
Imperial C.		х					
INFN-Bari	x	x					
IGFAE	x				x	x	
UVigo					х	x	
U Warwick	x	х				x	
Fermilab	x	x				x	
INFN Padova	x	х				x	
IFIC	x				x		
U Uludag					x	x	

Institute	T1	T2	Т3	T4	T5	Т6	T7
DIPC			x		x	х	x
IFIC			x			x	
UPV			x				
LIP-Coimbra			x				
IGFAE			x				
U Coimbra			x				
U Aveiro			x			х	
Astrocent			x				
WIS			x		x		x

(B) TPCs	for lo	w-ene	rgy nu	uclear	physi	cs.	
Institute	T1	T2	Т3	T4	T5	Т6	T7
MSU		x	х				
ISNAP		x				x	
IGFAE	х					x	
RIKEN		x					
SINP		x					
IRFU/CEA		x					
WIS	х	х				x	
GANIL		х				х	

Institute	T1	T2	Т3	T4	T5	Т6	T7
GSSI	х			x	x		
IRFU/CEA		х		x			x
INFN-Roma1	х			x		х	x
RAL	х	х		x			
HIP	х	х		x			
UH Manoa	х	х		x			
New Mexico	х	х		x			
CERN	х						
CAPA/UNIZAR		х				x	x
LIP-Coimbra			х			х	
ANU	х	х		x		x	
IN2P3/UGA	х			x		x	
U Hamburg	х	х		x	x	x	x
U Kobe				x			x
U Bonn				x			

WP8 – TPCs as Reaction and Decay Chambers

Existing

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP8	TPCs as Reaction and Decay Chambers	495	505	405	78.35	73.05	72.55

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP8	TPCs as Reaction and	516.5	471.5	436.5	35.1	40	40
	Decay Chambers						

Institutes

- 41 institutes from 16 countries
- All projects/tasks covered

WP9 – Beyond HEP

Key application areas (projects):

- cosmic muon imaging (muography) and large area applications; public safety and mining industry
- dosimetry/beam monitoring and medical imaging applications (PET, CT, X-ray, SPECT, Gamma cameras, or X-ray fluorescence imaging)
- fast/thermal neutron imaging with solid converters for neutron science, neutron beam monitoring, tomography and nuclear waste monitoring

Common challenges:

- Portable and recirculating gas systems
- Sealed detectors or ultra-low gas consumption
- · Operational stability in outdoor natural or extreme environments
- Cost-efficient solutions for robust large detectors
- Very low maintenance level
- Neutron converters
- Front-End electronics radiation hardness
- Low material budget
- Physics applications (e.g neutron differential cross section studies)

	Task	Performance Goal	DRD1 WGs	ECFA DRDT	12M	Milestones/Deliverable 24M	36M	Institutes
TI	Cost-efficient	- Robust, cost-efficient		Long I	1		2007	
	large-size out-	large detectors						
- 1	door detector	- Design chain, materials			M1.1	M2.1	D1 Performance	
- 1	structures:	and construction compat-					evaluation of cos-	
- 1	design and	ible with outdoor use			Muon imaging	Muon imaging	mic imaging detec-	
	construction				and extreme envi-	and extreme envi- ronment demon-	tors and operation	
T2	Mechanical and envi-	 Mechanical stability 			ronment solutions: evaluation of pro-	strations: demon-	in extreme con- ditions: summary	
	ronmental	during transportation - Long-term sustainment			posed technologies	stration of the	report on prototype	
	stability of	of daily and yearly tem-			and solutions lead-	technological con-	performance, includ-	
	detectors un-	perature cycling			ing to applicability	cepts and proposed	ing available and	UNIMIB.
	der outdoor	- Compatibility with			in environments	solutions in con-	demonstrated tech-	UNIMIB,
- 1	or extreme	medical equipment			and configura.	ditions relevant to	nological solutions	IRFU/CEA.
	conditions	guidelines			tions relevant to	BHEP applications:	to address long-term	IRPUCEA,
T3	Detector porta-	- Portable structure, low			BHEP. This includes	field installation	outdoor operation	NISER
	bility and low	weight, integrity			maintenance-free	of cosmic imaging	(more than 1 year,	Bhubaneswar,
	maintenance	- Fast installation and low			operation, ex-	detectors, demon-	temperature 0 - 40	bildeditering,
	operation	maintenance need			treme or outdoor	stration of portability	deg), portability	U Coimbra,
		- Low or zero gas con-			temperature- and	and low (zero) flow	(meeting ASTM	
		sumption			humidity ranges.	operation. [T1-T6]	shipping standards),	LMU,
T4	Cost-efficient,	- Low power, high chan-	WGI.	11	[T1-T6]		longevity, low power	
	low power,	nel number, high effi-		,		M2.2	(below 10 W). Crit-	Wigner,
	long-lived	ciency	WG2.	13	M1.2		ical comparison of	
	Front-End and	- Readout optimized and				Characterization of	various technolo- gies and solutions,	U Bonn,
	DAQ systems	operating in an intense	WG3,		Evaluation of	prototype detectors for medical applica-	gies and solutions,	
T5	Detector opti-	neutron field			detector technol- ogy for medical	for medical applica- tions: demonstration	identification of gen- eral guidelines for	AGH-Krakow,
12	Detector opti- mization and	 Low background for surface- and underground 	WG4,		applications: char-	and characterization	high-performance	
	mization and simulation	surface- and underground muon imaging			applications: char- acterization of	of the developed	instruments and	ESS,
- 1	methods for	- Optimized structures us-	WG5,		application-specific	prototype detectors	for technological	Istinye U,
- 1	muons and	ing novel neutron con-			radiation fields and	in pre-clinical and	transfer towards	isunye 0,
- 1	neutrons	verters	WG6,		of different gaseous	clinical environ-	commercialisation.	U Hamburg,
T6	Benchmarking	- Definition of bench-	WG7		detectors for beam	ments, for medical	T1-T6]	o Hamourg,
	performance.	marking parameters for	WG7		monitoring, beam	photon detection and		U Sofia.
- 1	infrastructures	muography, medical and			characterization	in space radiation	D2	0 30114,
- 1	and knowledge	neutron science			and photon-based	simulating beams.		VUB and UGer
- 1	transfer	- Characterization of			imaging using de-	Optimization of de-	Performance eval-	von and occi
- 1		benchmark sites, com-			tailed simulations	tector performance.	uation of detectors	CNRS-LSBR
		parative measurements			and already existing	[17-19]	for medical appli-	,
17	Optical read-	- Ability to measure	1		prototypes. Assess-		cations: assessment	GSI,
- 1	out MPGDs	sub-Becquerel activities			ment of suitability of	M2.3	and description of re-	
	for bio-marker	in single cells			respective detector		alization, operation and performance of	UCLouvain,
- 1	imaging and	- Reliably determine			technology and	Characterisation		
	beam char-	pre-clinical and clinical			customization of de-	of key aspects of	different detector	MedAustron,
	acterization	beam parameters with			sign to application.	gaseous neutron	technologies in clin-	
- 1	in ion beam	well-characterized detec-			[T7-T9]	detectors: determi-	ical and pre-clinical	OXY,
	therapy	tor			M1.3	nation of efficiency and maximum	environments, for	
T8	Gaseous pho-	- Optimization of detec-			M1.3	and maximum achievable rate ca-	medical photon detection and re-	U Johanne
- 1	ton detectors for in-beam	tor concept with good time resolution for in-			Study of neutron	pability of different		burg
	nonitoring	beam range verification			converter materials	detector proto-	lated applications. Description of inte-	
- 1	for ion beam	- Study detection effi-			realisation pro-	types. Evaluation	gration possibilities.	
- 1	therapy and	ciency for annihilation			cesses: definition of	of gamma-ray sen-	[T7-T9]	
	imaging and	photons and temporal res-			realisation processes	sitivity and neutron	[114-13]	1
- 1		olution			and characterisation	discharge probabil-	D3	
TO	Beam mon-	- Monitor clinical ion	1		of solid/gas con-	ity. Measurement		1
~	itors with	beams at normal and high			verters of different	of spatial resolution	Performance eval-	1
- 1	high temporal	dose rates with us resolu-			areas. Estimation of	and image cana-	uation of gaseous	1
- 1	resolution	tion			expected detection	bility reconstruc-	neutron detec-	
- 1	for ion beam	- Monitor space radia-			efficiency. Eval- uation of intrinsic	tion.Determination	tors: comparison	
	therapy and	tion simulating secondary			uation of intrinsic	of radiation hardness	of performances	1
- 1	space radiation	beams at high and low			background due to	of front-end elec-	of the different	
_	simulation	fluence in real-time			employed materials	tronics. [T4,T10-	detector technol-	
TIC	Study of Inno-	- Optimizing 2/3D solid-			and definition of common strategies	T12]	ogy prototypes in terms of efficiency	1
- 1	vative neutron converters	state large area and					terms of efficiency (1-40% for ther-	1
		gaseous converters - Enhancement of com-			to limit it. [T10- T12]		(1-40% for ther- mal neutrons), rate	1
- 1	with gaseous amplifying	 Enhancement of com- bined converter and 			114		capability (order	
- 1	structures	amplification structures					MHz/cm ²), back-	
- 1	for high-rate,	Evaluation and lim					ground suppression,	1
	efficient, low-	-Evaluation and lim- itation of intrinsic					spatial resolution	1
- 1	backeround	background.					(sub-mm) and	1
	detectors						image capability	
TH	Spatial resolu-	- Enhancement of spa-					reconstruction.	
1	tion, readout	tial resolution and evalu-					Determination of	
- 1	granularity	ation of image-capability					the most suitable	
- 1	and rate capa-	reconstruction, sensitiv-					technologies for	
- 1	bility impact	ity and dosimetry capa-					specific applications.	
- 1	on neutron	bility.					Definition of next	
- 1	imaging and						steps for future	
- 1	dosimetry						gaseous neutron de-	
TI	Study of	-Evaluation of gamma	1				tectors development.	
	Gamma Ray	rays sensitivity at high					[T10-T12]	
	sensitivity	flux facilities						
	and neutron	-Study of neutron-						
	discharge	induced discharge						
		induced discharge probability -Study in clinical envi-						

- Low background materials
- Environmental-friendly gas mixtures
- Large Area granularity
- Sensitivity

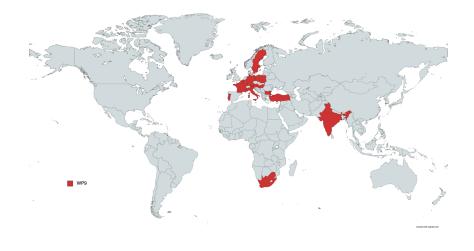
Efficiency

WP9 – Beyond HEP

Institutes

- 18 institutes in 13 countries
- All tasks covered

					Task	S						
Institute	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11	T12
UNIMIB				x						x	x	x
Bonn										x		
UCL		x	x	x								
LIP	x		x		x					x	x	
ISU	x	x			x							
Wigner	x	x	x	x	x	x						
AGH										x		
Hamburg										x	x	x
Saclay	x	x	x	x	x		x			x	x	x
LMU			x				x		х			
SOfia								x				
MedAustron		x							х			
VUB			x		x	x						
LSBB						x						
NISER	x			x	x							
ESS						x				x	x	
GSI									x			
UJ								x				



Existing

	-						
WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP9	Beyond HEP	803	783	694	40.5	37.5	35.2

Additional (not existing)

WP	Description	Material	Material	Material	FTE	FTE	FTE
		[kCHF]	[kCHF]	[kCHF]	(2024)	(2025)	(2026)
		(2024)	(2025)	(2026)			
WP9	Beyond HEP	140	225	275	15.9	20.4	23.9

RESOURCES

Resource and infrastructures

A Common Fund will be established, supported by limited and fixed yearly contributions from each DRD1 institute. This fund will serve as a valuable resource for supporting activities of common interest within the collaboration.

Examples of such activities include

- Common Projects
- Software and Electronics development
- Common Facilities
- Collaboration events (such as meetings, conferences, workshops, schools, and training events), and Collaboration Management.

The Collaboration Board, composed of one representative from each collaborating institute, will be responsible for coordinating the financial planning and addressing other resource-related matters.

To ensure transparency and accountability, the specific contribution details, including the amount and frequency of contributions, will be clearly defined in the MoU.

• This agreement, to be signed by all member institutes, will serve as the guiding document for financial obligations and expectations within the collaboration.

Common investments, such as materials and infrastructure, within the DRD1 Collaboration, will be covered, depending on the interest in the community and the required resources:

1) by common funds

2) by mechanisms similar to the Work Packages.

• For what concerns this option, and drawing inspiration from the RD51 Collaboration model, the participating parties in DRD1 will have the flexibility to collectively agree on cost-sharing for these common investments.

"RD51 MoU Article concerned (9.3): Independently from the RD-51 Common Fund, Parties to the RD-51 Collaboration may agree amongst themselves to share costs for common projects, such as submission of wafer production or other procurements"

This cooperative approach allows for the sharing of expenses related to essential requirements like base material, production or testing equipment, large-scale electronics production or other procurement activities.

Strategic R&D targeting mainly the priority programmes outlined in the updated European Strategy for Particle Physics, but not only.

WP should highlight the following:

- Technologies to be studied and performances to be expected with respect of the set goals
- Key R&D deliverables (at least one per year/task) in the coming three years
- Estimated costing
- List of institutes
- Resources available:
 - Manpower (FTE)
 - Committed budget
 - Additional budget

- DRDC will check that a rough estimation of the resources (FTE /funds) matches the demand given by the scientific program
- DRDC will not scrutinize strategic funds: they cannot judge on resources necessary to develop certain technologies
- CERN RRB is only for money on CERN accounts

COLLABORATION STRUCTURE

• Management Board (~20 people): CB-wide elected members + ex-officio (SPs, CB Chair/Deputy, CB/MB

Secretary, Scientific Secretary, Technical Coordinator, Resource Coordinator)

- Objective:
 - fair representation of all DRD1 detector communities, geographical regions, including diversity aspects (e.g. young researchers), coordination body among gas detector technologies, including Common fund issues
- Mandate:
 - oversee *strategic implementation of the DRD1 collaboration priorities* (in achieving and complying with established scientific goals and FA policies);
 - ensure « GLOBAL » nature of the DRD1 activities; develop future DRD1 strategy for common technology developments & assets, as an input for the CB discussions & approval

Collaboration body: Collaboration board and Financial Board (proposal)

• Collaboration Board (1 representative per research institute) + ex-officio (SPs, CB Chair/Deputy, CB/MB

Secretary, Scientific Secretary, Technical Coordinator, Resource Coordinator)

- Mandate:
 - policy and decision-making body of the DRD1 Collaboration
- Finance Board: FA-nominated representatives, WP Coordinators + ex-officio (SPs, CB Chair/Deputy,

Scientific Secretary, Technical Coordinator, Resource Coordinator)

- Mandate:
 - define strategy to initiate/review/prolong/terminate WPs; coordinate preparation for DRDC reviews and CERN
 DRD1 finance reviews

Collaboration body: scientific coordination board (proposal)

- Scientific Coordination Board (~20-25 people): WG Conveners + WP Coordinators + ex-officio (SPs, CB Chair/Deputy, Scientific Secretary, Technical Coordinator, Resource Coordinator)
 - *WG Conveners:* two/WG, proposed by the MB; subject to CB endorsement
 - WP Coordinators: proposed by CB representatives, participating in WP; subject to MB/CB endorsement
 - Mandate:
 - *Execute the DRD1 Core Scientific Program* (as defined by the DRD1 Management, MB/CB, and FA).
 - Fair representation of different gas detector technologies & research areas

• Regular meetings of extended MB (MB + Scientific Coordination Board) are envisaged;

Collaboration Meetings

- Regular collaboration meetings will be organized to provide a forum for collaboration members to discuss progress, share updates, and address any challenges.
- These meetings will promote collaboration and ensure alignment with the overall goals and objectives of the collaboration.

Communication Channels

- Effective communication channels will be established to facilitate seamless information exchange among collaboration members.
- Collaboration website, the use of email lists, and the integration of online collaboration tools
 - to enable real-time communication and document sharing.
 - website already implemented: <u>https://drd1.web.cern.ch/</u>

CERN

Reporting and Evaluation

- Collaboration members will be expected to regularly submit progress reports on their activities.
- These reports will be subject to evaluation by the pertinent committees, including DRDC, to guarantee accountability and assess the overall progress of the collaboration.

Intellectual Property and Publication Policy

- Clear guidelines will be implemented to address intellectual property rights and publication policies.
- Collaboration members will be actively encouraged to publish their research findings while also adhering to any confidentiality requirements and ensuring the proper acknowledgement of the collaboration and its members.

Support from CERN will be needed on how to manage the industrial and semi-industrial partners

DRDS INTERPLAY

Synergies with other DRDs and US

v1.5

18

18

19

19

21

22

52

52

54

Contents Executive Summary I Executive Summary Executive Summary I.1 Introduction I.2 Scientific Organization of the DRD1 Collaboration I.2.1 Scientific Organization 1.2.2.2 WP2: Inner and Central Tracking with PID Capability, Drift Cham-I.2.2.3 WP3: Inner and Central Tracking with PID Capability, Straw and I.2.2.4 WP4:Inner and Central Tracking with PID Capability, Time Pro-I.3 Collaboration Organization **I.4 Resources and Infrastructures I.5 Partners and Their Fields of Contributions** I.6 Steps towards the formation of the DRD1 Collaboration I.7 DRD1 Implementation Team I.7.1 Roles covered during the DRD1 Implementation Phase Scientific Proposal & Research Framework

The following people act as DRD1 link persons in other DRD areas:

- DRD2 liquid detectors Diego Gonzalez Diaz
- DRD4 photon and PID Fulvio Tessarotto
- DRD5 guantum technologies Florian Brunbauer
- DRD6 calorimetry Imad Laktineh
- DRD7 electronics Sorin Martoiu, Marco Bregant

DRD1 Extended Proposal

DRD1 – DRD2 Interplay

Link person: Diego Gonzalez Diaz (diego.gonzalez.diaz@cern.ch)

DRD2-DRD1 Overlap:

- · Study of Dual-phase amplification in gas o in vapour phase achieved through wires, meshes, and thick-GEM structures
 - may require gaseous detector optimizations/operation in extreme conditions in the framework of DRD1.
- Operation of wires and MPGD structures directly in the liquid phase for signal induction and even light amplification
- > There are groups working on readout/amplification in dual phase or liquid involved in DRD1 community

Technological Overlap:

- Possibility of sharing detector manufacturing techniques between DRD1 and DRD2 communities:
 - The DRD1 community can provide expertise in the production techniques of detectors (MPGD or mesh or wire) in the liquid or vapour phase.

Simulations and Transport:

- In DRD2 simulations of electron-ion transport either in Monte Carlo or through Boltzmann-based techniques might be beneficial for DRD1 community (e.g., simulation of space-charge and charge-recombination)
 - attractive synergic/complementary approach with Garfield++/Magboltz transport in gas

Areas of Cross-Fertilization:

- Gas/liquid recirculation.
- System purification.
- Fluid-dynamics simulations.
- UV-photon detection.
- Radiopurity and material selection.

DRD1 – DRD4 Interplay

Link person: Fulvio Tessarotto (fulvio.tessarotto@ts.infn.it)

Gaseous photon detectors studies:

- innovative detector architectures
- innovative photoconverters
- > They are included in a DRD1 WP; links and synergies with DRD4 activities.

TRD R&D present in both DRDs, with relevant overlaps and synergies

- included in DRD1 for systems using gaseous photon detectors,
- included in DRD4 for systems using solid-state or alternative photon detectors.

Studies of eco-friendly gas solutions: low GWP gases; leakless systems, recycle or destruction; alternative solutions. Common studies and developments.

- Two specific WPs (one for detector gases in DRD1 and one for radiator gases in DRD4).
- A single cross-DRD WP, if possible, could represent the best solution.

DRD1 – DRD5 Interplay

Link person: Florian Brunbauer (florian.brunbauer@cern.ch)

Possible synergies between DRD5 activities on advanced materials (quantum & nano materials) and DRD1 (mainly in WG3 - Gas and Material studies) should be exploited:

- DRD5 includes a work package focused on materials, aiming to facilitate collaboration between material scientists and detector developers.
- The goal is to identify common interests and facilities for evaluating promising materials under conditions relevant to high-energy physics (HEP) experiments.
- The platform created by DRD5 provides an opportunity for fruitful exchanges and cooperation between material scientists and detector developers.

.

DRD1 – DRD6 Interplay

Link person: Imad Laktineh (imad.baptiste.laktineh@cern.ch)

Clear separation in the development of gaseous-detectors-based calorimeters between the DRD1 and the DRD6.

- DRD1 focuses on developing gaseous detectors for the calorimeters, benefiting from the expertise and know-how of the gaseous detectors community for what concerns the gain, the timing performance, the rate capability, and the eco-friendly gases to be used to operate them.
- DRD6 addresses issues related to the calorimeter system, including services and integration.
- Readout electronics and DAQ are discussed within DRD6, with potential exchange with other DRD1 groups working on similar developments for different applications.

DRD1 – DRD7 Interplay

Link persons: Sorin Martoiu (Sorin.Martoiu@cern.ch), Marco Bregant (Marco.Bregant@cern.ch)

- Following DRD7 Organization and Proposal Submission Calls (*)
- Identify tasks integrated into the DRD1 Work Packages that may develop into (DRD7) common generic development concerning ASIC and/or DAQ across our collaborations.
- Merge common tasks within the various DRD1 Work Packages (See tables in next slides).
- The possibility of exchange between DRD1 and DRD7 communities, with coordination from relevant bodies, of building blocks and IPs (ASIC sub-blocks, FPGA IPs or software components) is to be explored.

- (*) Proposals for R&D projects involving electronics and data processing can be included in either detector-related DRDs or in DRD7, taking into account the following guidelines:
- Projects in DRD7 will target common generic developments or exploration of cutting-edge technologies requiring negotiated access to frameworks and complex design flows. They may involve high costs, expert coordination or unique expertise, and can only be effectively delivered as a common community effort. They will follow design practices enabling later volume production in the industry and/or using COTS components.
- Projects in individual DRDs will target developments driven by DRD-specific requirements. They will typically be smaller-scale prototypes exploring or benchmarking novel concepts or technologies and delivering demonstrators. They will focus on diversity and originality, but will not necessarily be suitable for large-scale production.

• Common electronics tasks within the various DRD1 Work Packages

Task	Performance goal	Comments	Possible deliverables next 3-5 y
(Muon systems) New front end electronics	 1 fC threshold Geometrical avalanche quenching High sensitivity electronics and new detector structures to achieve stable and efficient operation (rate, occupancy) up to O(MHz/cm2) 	- Study of the integration of the FE electronics in the detector Faraday cage - Study of the integration of electronics and readout PCB	 Conceptual electronics design based on gas detector simulation and experimental measurements Development and test of a front-end prototype
(Large-volume drift chambers) Front-end ASIC for cluster counting	- High bandwidth - High gain - Low power - Low mass	achieve efficient cluster counting and cluster timing performances	full design, construction and test of a first prototype of the front-end ASIC for cluster counting
(Straw chamber) Electronic readout, ASIC	 Time readout with sub-ns precision Leading edge and trailing edge time readout 	- Dedicated R&D on ASIC	- ASIC - Readout system
(Time Projection Chambers) Low-power FEE	•< 5 mW/ch for >1e6 pad TPC - ASIC development in 65 nm CMOS	•continuous vs. pulsed	- Present stable operation of a multi- channel TPC prototype with a low- power ASIC
(Gaseous photon detectors) FEE	- High input C - Low noise - large dynamic range	•	- present an ASIC concept/prototype
(Gaseous timing detectors) Low-noise FEE	- High input C - large dynamic range - Fast rise time - sensitivity to small charge - Low noise	•	Define an ASIC

• Common DAQ tasks within the various DRD1 Work Packages

Task	Performance goal	Comments	Possible deliverables next 3-5 y
(Muon systems) Scalable multichannel readout system	•Front-end link concentrator to a powerful FPGA with possibilities of triggering an O(20GBit/s) to DAQ	 FPGA based architecture FPGA with embedded processing for triggering and ML Basic firmware and software can be bootstrapped from existing readout system 	First prototype by end of 2024 for commissioning at test beams
(Large-volume drift chambers) Scalable multichannel DAQ board	- High sampling rate - Dead-time-less - DSP and filtering - Event time stamping - Track triggering	- FPGA based architecture - ML algorithms-based firmware	working prototype of a scalable multichannel DAQ board
(Straw chamber) Electronic readout, ASIC	- Time readout with sub-ns precision - Leading edge and trailing edge time readout	- Dedicated R&D on ASIC	- ASIC - Readout system