
Data analysis in Julia with RNTuples and plan for a Julia
writer

Jerry Ling (Harvard University)
Dec., 2023

1/35

Learning Material

• Jakob Blomer’s slides at JuliaHEP workshop in Sep 2021
• RNTuple specification
• write-up in PR Fully support RNTuple reading #200

Note: The pending RC2 change will be breaking but the broad-stroke concepts remain.

2/35

https://indico.cern.ch/event/1074269/contributions/4539643/attachments/2317237/3945675/ROOT%20I_O%20and%20Foreign%20Languages%20%5Bv2%5D.pdf
https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md
https://github.com/JuliaHEP/UnROOT.jl/pull/200
https://github.com/root-project/root/pull/13779

Overview

1. Introduction
2. Benefits for users (and developers)
3. Technical walk-through of RNTuple
4. Next step: writer

3/35

Intro: Why TTree → RNTuple?

TTree has been serving the community for a long time (27 years). Why change now?
It seems to boils down to a few reasons:

1. TTree had a LOT of special cases (e.g. singly, doubly, and triply jagged branches
didn’t use the same pattern) and it’s getting harder to maintain over the years to
add new support

2. These implementation hacks lead to inefficiency when storing and reading (nested)
data collection (e.g. TObject serialization waste of metadata)

3. Out-dated designs: big-endian, hard to control I/O memory due to lack of
“cluster or row group” support (exists but not enforced).

In conclusion: RNTuple will bring faster and better data type support for all HEP use
cases.

4/35

Intro: Timeline of RNTuple

The ROOT Team views the RNTuple as a Run4 technology. Thus, “now” is a pretty
good time to do alternative implementation (i.e. in a different language).

• as a crosscheck for the RNTuple spec: does the actual implementation adhere to
the spec?

• give time for both ROOT and alternative implementation to mature before mass
adoption

Figure 1: Possible timeline

5/35

Intro: Comparing TTree and RNTuple

Using nanoAOD (ntuple-like, used by CMS, only flat and singly jagged branches) as
performance benchmark,

Figure 2: Reading performance comparison under different compression algorithms
6/35

User perspective: Comparing TTree and RNTuple

An RNTuple will be able to (recursively) store more (weird) C++ STL containers, e.g.:

• std::pair<T1, T2>
• std::tuple<T1, T2, …, Tn>
• std::variant<T1, T2, …, Tn>

• Also known as Union
• For example you can have:

std::vector<std::variant<std::string, int32_t, float>> [1.0, "hi", "but why", 42]

User-defined class must have fields that are RNTuple I/O compatible (finally,
everything has to look like data-struct to be compatible, limitation in a healthy way)

7/35

User perspective: A Future of Full Interpolation

Problems:a
1. a lot of implementation-depenent

stuff in reading and writing, hard to
layout what exactly we support

2. bad user experience (e.g. “oh, didn’t
know I can’t write back to .root I
need to pass output to someone”)

3. high maintenance because 1.
aref

Figure 3: TTree support

8/35

https://nbviewer.org/github/jpivarski-talks/2021-07-06-pyhep-uproot-awkward-tutorial/blob/main/uproot-awkward-tutorial.ipynb#Can-Uproot-read-my-data?

What I/O for RNTuple looks like (as of 2023)

Figure 4: RNTuple best senario Figure 5: RNTuple reality, Julia same as
uproot

Only weeks of development allows us to fully read almost everything! Unthinkable for
TTree. 9/35

From Julia side: it just works

• Every column (top-level field) is still <:AbstractVector
• Code works for TTree -> works for RNTuple, in UnROOT.jl

10/35

From Julia side: Query vs. Loop

While for-loop always works,
for evt in table

#...
end

Query-like APIs can make large analysis more structured, example benefits:

• tie-in systematics name handling (propagate to histograms)
• more amenable to compute-graph manipulations

We have Query.jl that can lump all queries into a single loop for simple cases. Open
question: what’s our priority in user analysis space?

11/35

Walk-through Step 0: Overview of .root file(system)

As you may know, .root is closer to a file system than a file.

• All the bytes are self-descriptive
• Can store different types of data (TH1X, TTree, TObjString, RNTuple, Image)
• Can nest TDirectory within TDirectory
• Can look up objects by name without reading everything
• Reading data objects means to chase pointers to bytes (TKey)

However, RNTuple is largely independent of this ROOT legacy, it doesn’t use any of
the classical ROOT stuff (e.g. TStreamer, TDirectory) once we are “inside” an
RNTuple.

To explain how RNTuple works we will go through steps involved in reading an
RNTuple.

12/35

Step 1: Finding RNTuple inside a .root file

Because .root is a file system and the RNTuple lives in it, we still need a little legacy
ROOT logic to find it. Start with the entire .root file on disk:
┌─────────────┬─────────────┬──┐
│ File Header │ Header TKey │ more bytes ... │
└─────────────┴─────────────┴──┘
│← ~100bytes →│
│← File size on disk (not to scale) →│

13/35

Notations

14/35

Step 1: Finding RNTuple inside a .root file

Once we have the header TKey, the rest can be summarized as the following:

This leads us to the gate object: RNTuple
anchor
Once pass the gate (the anchor),
everything will be in the “new” logic:
little-endian, no more TKey, TStreamer,
TDirectory look up. And we’re reading to
parse RNTuple from scratch.
While many of them are also possible to
read/write with TTree (except
std::variant), they are done mostly on a
case-by-case basis and un-obvious how the
containers would compose.

Figure 6: From .root to RNTuple anchor
15/35

Step 2: Parse Header + Footer

The anchor only leads us to the RNTuple header and footer (they contain metadata
like schema), let’s use header as an illustration.

Three fields in the anchor are related to header:

• fSeekHeader – the offset to the first byte of the header
• fNBytesHeader – the number of bytes of the header chunk in file
• fLenHeader – the number of bytes of the header after decompression

this implies that if fNBytesHeader == fLenHeader , we have uncompressed header in this
file, this comparison is a common pattern in streaming I/O.

Rinse and repeat, and you get the entire schema of the RNTuple.

16/35

Step 3: Understand the Schema of RNTuple

Figure 7: anchor to header/footer/page list

1. Find anchor in .root file
2. Parse header and footer

meta data (schema)
3. Materialize PageList object

and read actual data from
pages (think basket)

The main point we’re about to
demonstrate is the RNTuple
schema is compatible with
Awkward Array. We will use an
example data set and work
through a few examples.

17/35

Step 3: The fields and columns in RNTuple Schema

Imagine your have a RNTuple that is:

│ Trigger MET lep_Pids
│ #Bool #Struct #Vector{Int}
┼───
│ true (E = 530.3, ϕ = 2.3) [11, 13, -13]
│ true (E = 752.1, ϕ = -0.7) [11, -11]
│ false (E = 170.9, ϕ = 1.2) [11, -11, -11, 11]

You might want to say it has
three columns, but it actually has
6 fields and 5 columns. The
Trigger, MET, lep_Pids are 3 (top)
fields, not columns. In other
words, users will always address
each top field by name.

18/35

Step 3: Fields and Columns Records

Both the field and column records are stored in the header we just parsed. They look
something like this when viewed directly.

Field records:
> rn.header.field_records
6-element Vector{FieldRecord}:
parent=00, role=0, name=Trigger , type=bool
parent=01, role=2, name=MET , type=MET
parent=02, role=1, name=lep_Pids, type=std::vector<std::int32_t>
parent=01, role=0, name=E , type=float
parent=01, role=0, name=ϕ , type=float
parent=02, role=0, name=_0 , type=std::int32_t

19/35

Step 3: Fields and Columns Records

Column records:
> rn.header.column_records
5-element Vector{ColumnRecord}:
type=06, nbits=01, field_id=00, flags=0
type=02, nbits=32, field_id=02, flags=5
type=08, nbits=32, field_id=03, flags=0
type=08, nbits=32, field_id=04, flags=0
type=11, nbits=32, field_id=05, flags=0

20/35

Step 3: Schema as Awkward Form

If you’re familiar with Awkward, here’s a mapping from the RNTuple to an Awkward
array, it happens so that you can map any RNTuple schema into Awkward, and it’s the
implementation strategy for Uproot:

21/35

Step 3: Schema as tree

> rn.schema
RNTupleSchema with 3 top fields
├─ :Trigger ⇒ Leaf{Bool}(col=1)
├─ :MET ⇒ Struct
│ ├─ :E ⇒ Leaf{Float32}(col=3)
│ └─ :ϕ ⇒ Leaf{Float32}(col=4)
└─ :lep_Pids ⇒ Vector

├─ :offset ⇒ Leaf{Int32}(col=2)
└─ :content ⇒ Leaf{Int32}(col=5)

As example, we will now manually parse fields to show how physical data is organized.

22/35

Step 3: Fields and Columns

The Trigger field is the most simple example, just a flat field:

Field record implicit id = 0
parent=00, role=0, name=Trigger , type=bool
Column record
type=06, nbits=01, field_id=00, flags=0

23/35

Step 3: Fields and Columns by example

For a simple struct field (MET), it needs N columns, N is the number of data fields of
the struct:

Figure 8: Field and column associated with MET 24/35

Step 3: Fields and Columns

For a singly jagged field (lep_Pids), it needs two columns, to represent
[[11,11], [], [13]] , you have: 1) offsets: [0, 2, 2, 3] ; 2) content: [11, 11, 13] .

Figure 9: Field and column associated with lep_Pids

25/35

Step 4: Putting it all together

1. The RNTuple header tells you on how fields and columns should be interpretated.
2. The footer tells you where to find pageslist (somewhere else in the file).
3. The pagelist tells you where to find pages (which have actual data) for each

column.

Figure 10: Finally 26/35

Step 4: Putting it all together

To show what the PageList (“list of list of list”) is for:

Figure 11: Triply-nested list
27/35

Step 5: Handle Cluster Group

Each PageList is responsible for a “Cluster Group” (which has multiple clusters,
corresponding to the outer most list in the triply nested list).

In the rare case of having more than one cluster group, use information from “Cluster
Summary” to find the n-th cluster, and find the Cluster Group that contains it.

28/35

Comment: Implication on Reading Granularity

• In TTree , the granularity of reading is a TBasket from a TBranch . The basket
payload has to be decompressed as a whole, and the payload will contain
complete data for N events for that branch.

• Furthermore, the branch contains meta data on the “event range” of all its
baskets to facilitate random reading.

• In RNTuple , the closest analogy to a “basket” is a “page”, however, because “page”
belongs to column, and a field visible to the user may have multiple columns, a
given event may involve data across “page” boundary.

• In summary, for RNTuple the only way to be certain you have full data for N
complete events is to read the entire cluster for the relevant fields(columns).

29/35

Comment: Connection to industry formats

It turns out RNTuple shares a lot of similar ideas to Parquet (in chunking/pagination)
and Arrow (in schema tree):

RNTuple Parquet Arrow (in RAM)/Feather (disk)

field column field
column – array
cluster row group row group

page list column chunk record batch
page page buffer

30/35

Conclusion and next step

RNTuple as a format is a long-awaited evolution of TTree:

• Composable in types, allow succinct and more correct implementation
• More “language-independent” if third-party developers attempt

• Better performance on real physics data with correct cluster size tune

From a user perspective:

• Reading of a large variety of types already functional in Python and Julia
• The development is very efficient (less hours, more weird types)

• Future: a 100% compatibility in both reading and writing is possible

31/35

Near future: RNTuple Writer

First, I want to make the scope clear. Writing RNTuple means “able to write out a
single RNTuple table embeded in a .root file”.

Importantly, RNTuple has specification, the container .root file (i.e. TFile) does not.
But ROOT team has signaled they’re willing to freeze TFile specification to make
claims like “compatible with RNTuple version X” sound.

32/35

Near future: RNTuple Writer

Reverse the “reading walk-through” actually requires completely different code paths:

• When reading a file, you read metadata first, and the content, recursively.
• When writing a file, you need to commit bytes to disk in reverse order.

This is because the metadata often “points” to content (either in type space or just
disk offsets); you don’t know what to write in metadata until pointee is frozen.

Challenges:

• you need to manage “empty slots” in your file byte blob
• when things don’t fit, you need to shift bytes blobs around (most relevant if we

allow appending)
• ROOT has hidden metadata, logically not useful for RNTuple, but lack of them

would render the file illegal for ROOT to read.
33/35

Near future: Check List

• Individual components of RNTuple is understood (byte representation)
• Cascade writer for everything-RNTuple is easy (i.e. exists in my head)
• TFile-related less clear:

• How does TStreamer work?
• RBlobs rule?

I have looked at hex dump of simple ROOTFiles: Some possible temporary
workarounds: copy bytes blocks from legal ROOT files.

34/35

HexDump

35/35

