EDM4hep .]1 Pere Mato/CERN
Analysing EDM4hep files with Julia ~ 22Febrery 20

https://github.com/peremato/EDM4hep.jl

https://github.com/peremato/EDM4hep.jl

EDM4hep

* Event Data Model for High Energy Physics

* At the core of every data processing framework

* Aimed at defining a common data model for the high-energy physics
(HEP) community

* The primary objective of EDM4hep is to establish a standard format for
storing and exchanging event data in HEP experiments

* This standardization helps facilitate collaboration among different

experiments, analysis frameworks, and software tools within the HEP
community

EDM4hep - Introduction

+ Based on the PODIO edm-toolkit

HitCoIlectionJ
User Layer

+ use yaml-files to define EDM objects then | l:[L[it | |
generate C++ code via Python/Jinja scripts

[HitObject J Object Layer

* three layers of classes (in C++) ‘ l

[HitData] POD Layer

* POD layer - the actual data in array of structs

Ch
“ Object layer - add relations and vector
members
User &
[Data) POIsDeIrayer
« User layer - thin handles and collections :
Julia

+ Default I/O backend: ROOT

EDM4hep - YAML input file

N/
%°*

Entities defined in terms of

* basic components (e.g. Vector3f)

* basic types (e.g. float)

« fix-size arrays (e.g. std::array)

* one-to-one and one-to-many relations

» vector members (variable size)

The goal was to have C++ code with
value-semantics

edmdhep: :ReconstructedParticle:
Description: "Reconstructed Particle"
Author: "F.Gaede, DESY"

Members:

— 1nt32_t type

— float energy

— edmdhep: :Vector3f momentum

— edmdhep: :Vector3f referencePoint

— float charge

- float mass

— float goodnessOfPID

— std::array<float,10> covMatrix
OneToOneRelations:

— edmdhep: :Vertex startVertex

— edmdhep::ParticlelD particlelIDUsed
OneToManyRelations:

— edmdhep::Cluster clusters

— edm4hep: :Track tracks

— edm4hep: :ReconstructedParticle particles

— edmdhep: :ParticlelID particlelDs

The full Data Model

EDM4hep DataModel Overview (v0.10)
RawCalorimeterHit ParticleID
\
? MCRecoCaloAssociation \Cll i nagaskie \\ Cluw /
CaloHitContribution
f OO / . <O
MCPamcle ‘ MCRecoParticle Association > R OCOllStl'll ctedPam cle
\
\
\
=3 'n'ack
_ MCReCOTraCkerASS%m it 4%% @ Vertex
SimTrackerbil < —— = ‘T ytigPlane
Monte Carlo TrackerPulse Reconstruction &
Raw Data Digitization Analysis

* Covering the simulation / digitization / reconstruction/analysis domains

e

EDM4hep - Who are the Users?

* Linear collider community (ILC, CIC) has moved from LCIO to
EDM4hep (adiabatically)

Circular Collider community (FCCee, CEPC) use it for analysis

* EIC community has adopted EDN4eic (a variation of EDM4hep) for
their event model

Mouvaton for EDM4hep.jl

* Generate Julia ‘friendly” structures for the EDM4hep data model

“ Be able to read event data files (in ROOT) written by C++ programs
from Julia (using the UnROQOT.jl package)

“ Later, be able also to write RNTuple files from Julia

Implementing EDM4hep in Julia is a pre-requisite for introducing the
Julia language in Simulation and Reconstruction workflows

Main Design Features

“ All entities are immutable structs for better pertormance, SoA, GPUs, etc.
* POD with basic types and structs, including the relationships (one-to-one and one-to-many)

* Objects attributes cannot be changed, new instances must be created (Accessors.jl)
* Constructors have keyword arguments with reasonable default values

* New objects are by default not registered, they are “free floating”. Explicit registration or
setting relationships will register them to containers.

“ Note that operations like register, setting relationships will automatically create a new
instances. The typical pattern is to overwrite the user variable with the new instance, e.g.:

pl = MCParticle(...)
pl, d1 = add_daugther(pl, MCParticle(...))

* Reading EDM4hep containers from ROOT should result in StructArrays

“ Very efficient access by column and the same time provide convenient views as object instances

StructArrays.jl

* Package that provides tools for working with
structs of arrays efficiently (SoA)

« Etficient Storage

“ Struct arrays store elements contiguously in memory,
improving cache performance

* Type Stability

NS

* Maintains type stability even when working with
arrays of structs

* Vectorized Operations

“ Enables vectorized operations on arrays of structs,
similar to operations on standard arrays

* Compatibility

+ Seamlessly integrates with other Julia packages and
tools

using StructArrays

Define a custom struct
struct Polnt
x::Float64
y::Float64
end

Create a struct array

points = StructArray([Point(
Point (
Point(

Access elements
println(points[1])

’

-

1.0
3.0
5.0

-

2.0)
4.0)
6.0)

1)

Output: Point(1.0, 2.0)

PODIO Generation

* Written small Julia script to generate
Julia structs from YAML file

* Added a ObjectID to each object to
control its registration state

* Relations implemented with ObjectID
and Relation structs with just indices

(isbits())

+ Two files: genComponents. jl,
genDatatypes. jl generated that
can be complemented with utility
methods

struct MCParticle

Description: The Monte Carlo particle — based on the lcio::MCParticle.
Author: F.Gaede, DESY

struct MCParticle <: POD

end

index::0bjectID{MCParticle} # ObjectID of itself

#———Data Members
PDG::Int32
generatorStatus::Int32
simulatorStatus::Int32
charge::Float32
time::Float32
mass::Float64
vertex::Vector3d
endpoint::Vector3d
momentum: :Vector3f
momentumAtEndpoint::Vector3f
spin::Vector3f
colorFlow: :Vector2i

PDG code of the particle

status of the particle as defined by the ...
status of the particle from the simulation ...
particle charge

creation time of the particle in [ns] wrt.
mass of the particle in [GeV]

production vertex of the particle in [mm].
endpoint of the particle in [mm]

particle 3-momentum at the production vertex..
particle 3-momentum at the endpoint in [GeV]
spin (helicity) vector of the particle.
color flow as defined by the generator

HHFHHFHHFHFHRFHRH

#-——0neToManyRelations
parents::Relation{MCParticle,1} # The parents of this particle.
daughters::Relation{MCParticle,2} # The daughters this particle.

struct SimTrackerHit

Description: Simulated tracker hit
Author: F.Gaede, DESY

struct SimTrackerHit <: POD

end

index::0bjectID{SimTrackerHit}
#-———Data Members
cellID::UInt64

EDep::Float32

time::Float32
pathLength::Float32
quality::Int32
position::Vector3d

momentum: :Vector3f
#-——0neToOneRelations
mcparticle_idx::0bjectID{MCParticle} # MCParticle that caused the hit.

ObjectID of itself
ID of the sensor that created this hit
energy deposited in the hit [GeV].

quality bit flag.
the hit position in [mm].

HHEHHFHHFH H

proper time of the hit in the lab frame in ...
path length of the particle in the sensiti ...

the 3-momentum of the particle at the hits ...

Building the Event Model in Memory

©
W
I

PS5, p2

p6, p2

end

p4 = MCParticle(PDG=-2,
p4, p2 = add parent(p4,

p6 = MCParticle(PDG=22,
p6, pl = add parent(p6,
add_parent(p6,

mass=0.938, momentum=(

7000.0), generatorStatus=3)

0.0, 0.0,
mass=0.938, momentum=(0.0, 0.0, -7000.0), generatorStatus=3)

pl)

MCParticle(PDG=1, mass=0.0, momentum=(0.750, -1.569, 32.191), generatorStatus=3)
p3, pl = add parent(p3,

mass=0.0, momentum=(-3.047, -19.000, -54.629), generatorStatus=3)

p2)

pl)
p2)

p5 = MCParticle(PDG=-24, mass=80.799, momentum=(1.517, -20.68, -20.605), generatorStatus=3)
p5, pl = add parent(p5,
add_parent(p5,

mass=0.0, momentum=(-3.813, 0.113, -1.833), generatorStatus=1)

pl)
p2)

p5)

p5)

#———Simulation tracking hits

p7 = MCParticle(PDG=1, mass=0.0, momentum=(-2.445, 28.816, 6.082), generatorStatus=1)
p7, p5 = add_parent(p7,

p8 = MCParticle(PDG=-2, mass=0.0, momentum=(3.962, -49.498, -26.687), generatorStatus=1)
p8, p5 = add parent(p8,

#---MCParticles———————————H——H—"m--"—"H—— o i i i i i
pl = MCParticle(PDG=2212,
p2 = MCParticle(PDG=2212,

-j % 5.), mcparticle=p8)

for j i1n 1:5
sthl = SimTrackerHit(cellID=0xabadcaffee, EDep=j*0.000001, position=(j * 10., j *x 20., j x 5.), mcparticle=p7)
sthl = register(sthl)
sth2 = SimTrackerHit(cellID=0xcaffeebabe, EDep=j*0.001, position=(-j * 10., -j * 20.,
sth2 = register(sth2)

Relationships and Vector members

“ ObjectID{ED} - implementing 1-to-1

struct ObjectID{ED<:POD} <: POD
index::Int32

“ Acts as a reference to object of type ED in the collectionID::UInt32

EDStore end

Base.convert(::Type{ED}, i::0bjectID{ED}) where ED

+ back and forth conversions

? E : - struct Relation{ED<:POD,TD<:POD,N}
% Relatlon{ED} 5 1mplementmg 1-tO-N first::UInt32 # first index (starts with 0)
last::UInt32 # last index (starts with 0)
3 : : : collid::UInt32 # Collection ID of the data
“ Represents a variable size vector (realised as 3 end
UIIlt32) Base.iterate(r::Relation{ED,TD,N}, i=1) where{ED,TD,N}

+ PVector{T} - vector member

struct PVector{ED<:POD,T, N} <: AbstractVector{T}

- : first::UInt32 # first index (starts with 0)
2 POD'hke vector Of type T last::UInt32 # last index (starts with 0)

collid::UInt32 # Collection ID of the data
+ AbstractVector interface end

Base.iterate(v::Relation{ED,TD,N}, i=1) where {ED,T,N}
1

2

Layout in Memory

“ EDM objects are created free-
floating

"

* They are registered in containers
explicitly or when building
relationships

* To keep track of the containers
the struct EDStore{ED} has
been introduced

N

- Provided methods to control its
lifetime (init!(), empty!(), etc.)

“MCParticles” “parents” “daughters”
f#,l) é N\ D
o #1 9 begin ObjectID

/ en ObjectIiD
> N A A
#3 / ObjectID
= 4
| begin | ___— > \

[Relation] [Relation I ey ObjectID

- - < 4
ObjectID

_—— | L y

- J & y € Y

It looks complicated, but in reality is

completely transparent to the User

13

Navigating Relatonships

for p in getEDStore(MCParticle).objects
println("MCParticle $(p.index) with PDG=$(p.PDG) and momentum $(p.momentum) has $(length(p.daughters)) daughters")
for d in p.daughters
println(" ———> $(d.index) with PDG=$(d.PDG) and momentum $(d.momentum)")
end
end

for s in getEDStore(SimTrackerHit).objects
println("SimTrackerHit in cellID=$(string(s.cellID, base=16)) with EDep=$(s.EDep) and position=$(s.position)
associated to particle $(s.mcparticle.index)")

end

MCParticle
MCParticle
——> #1
———> #5
———> #6
MCParticle
MCParticle
———> #3
——=> #5
——> #6
MCParticle

#1 with PDG=1 and momentum (0.75,-1.569,32.191) has @ daughters

#2 with PDG=2212 and momentum (0.0,0.0,7000.0) has 3 daughters
with PDG=1 and momentum (0.75,-1.569,32.191)

with PDG=-24 and momentum (1.517,-20.68,-20.605)

with PDG=22 and momentum (-3.813,0.113,-1.833)

#3 with PDG=-2 and momentum (-3.047,-19.0,-54.629) has 0 daughters
#4 with PDG=2212 and momentum (0.0,0.0,-7000.0) has 3 daughters
with PDG=-2 and momentum (-3.047,-19.0,-54.629)

with PDG=-24 and momentum (1.517,-20.68,-20.605)

with PDG=22 and momentum (-3.813,0.113,-1.833)

#5 with PDG=-24 and momentum (1.517,-20.68,-20.605) has 2 daughters

———> #7 with PDG=1 and momentum (-2.445,28.816,6.082)

———> #8 with PDG=-2 and momentum (3.962,-49.498,-26.687)
MCParticle #6 with PDG=22 and momentum (-3.813,0.113,-1.833) has @ daughters
MCParticle #7 with PDG=1 and momentum (-2.445,28.816,6.082) has 0 daughters

MCParticle

#8 with PDG=-2 and momentum (3.962,-49.498,-26.687) has 0 daughters

SimTrackerHit in cellID=abadcaffee with EDep=1.0e-6 and position=(10.0,20.0,5.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.001 and position=(-10.0,-20.0,-5.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=2.0e-6 and position=(20.0,40.0,10.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.002 and position=(-20.0,-40.0,-10.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=3.0e-6 and position=(30.0,60.0,15.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.003 and position=(-30.0,-60.0,-15.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=4.0e-6 and position=(40.0,80.0,20.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.004 and position=(-40.0,-80.0,-20.0) associated to particle #8
SimTrackerHit in cellID=abadcaffee with EDep=5.0e-6 and position=(50.0,100.0,25.0) associated to particle #7
SimTrackerHit in cellID=caffeebabe with EDep=0.005 and position=(-50.0,-100.0,-25.0) associated to particle #8

Integrated in the Julia ecosystem

« Simple structs (isbits) and vectors of them integrate well with the rest of
the Julia ecosystem. Examples:

* A container of EDM4hep datatypes can be converted to a DataFrame immediately

“ Very usetul for GPU array programming

using DataFrames
df = DataFrame(getEDStore(MCParticle).objects)

8x15 DataFrame

Row index PDG generatorStatus simulatorStatus charge time mass vertex endpoint momentum momentumAtEndpoint spin colorFlow parents daughters
ObjectID.. Int32 1Int32 Int32 Float32 Float32 Float64 Vector3d Vector3d Vector3f Vector3f Vector3f Vector2i Relation.. Relation..
1 | #1 1 3 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (0.75,-1.569,32.191) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[2] MCParticle#[]
2 | #2 2212 3 0 0.0 0.0 0.938 (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,7000.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[] MCParticle#[1, 5,
3 | #3 -2 3 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (-3.047,-19.0,-54.629) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[4] MCParticle#[]
4 | #4 2212 3 0 0.0 0.0 0.938 (0.0,0.0,0.0) (0.0,0.0,0.0) (0.0,0.0,-7000.0) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[] MCParticle#[3, 5,
5 | #5 -24 3 0 0.0 0.0 80.799 (0.0,0.0,0.0) (0.0,0.0,0.0) (1.517,-20.68,-20.605) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[2, 4] MCParticle#[7, 8]
6 | #6 22 1 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (-3.813,0.113,-1.833) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[2, 4] MCParticle#[]
7 | #7 1 1 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (-2.445,28.816,6.082) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[5] MCParticle#[]
8 | #8 -2 1 0 0.0 0.0 0.0 (0.0,0.0,0.0) (0.0,0.0,0.0) (3.962,-49.498,-26.687) (0.0,0.0,0.0) (0.0,0.0,0.0) (0,0) MCParticle#[5] MCParticle#[]

1 column omitted

15

ROOT 170

* Using Jerry Ling’s UnROOT.jl package - really a great package!

“ Supports (transparently) TTree and RNTuple formats and several
versions of PODIO storage

« data files consist exclusively of ‘collections-of-datatypes’ (e.g.
ReconstructedParticles, Vertices, etc.)

* The goal is to obtain a StructArray{DataType} of each collection in
each event

* The exercise consists in mapping the schema in the file (using ROOT streamer
info) to the actual Julia datatype (using the Julia introspection)

16

Creating SoAs from EDM4hep types

* UnROQT.jl provides the leaves

arrays (in a lazy manner) and they are (SimTrackertit #

“mapped” to form SoA of a DataType

“ Opens the possibility of schema
evolution

« filling empty attributes, type change, re-
shaping, etc.

using StructArrays
Create a struct array
hits = StructArray{SimTrackerHit}(Tuple(<TLeaf>...))

Access elements
println(hits[1]) # Output: SimTrackerHit(....)

an 4 h 4)
)))
C SimTrackerHit #2)
(" SimTrackerHit #3 o
i C
E(t
n © .
d X Z X Z i
. y y e lm
X o
D
(" SimTrackerHit #N)
_/ A
o WY Y,
position momentum

17

S0A provides a very Ergonomic interface

“ Storage in memory consists of a
set of column arrays

“ very fast access by column

* Materialize, when requested,
object instances (usually on the
stack) to be able to call user
object methods

* to achieve a user friendly access

julia> typeof(mcps[1])
MCParticle

julia> typeof(mcps.charge)
SubArray{Float32, 1, Vector{Float32},
Tuple{UnitRange{Int64}}, true}

julia> length(mcps.charge)
211

julia> mcps[1:2].momentum

2—element StructArray(::Vector{Float32},
: :Vector{Float32}) with eltype Vector3f:
(0.5000167,0.0,50.0)
(0.5000167,0.0,-50.0)

julia> sum(mcps[1:2].momentum)
(1.0000334,0.0,0.0)

: :Vector{Float32},

18

Reading froma ROOT (T'Iree) File

Hit # related to MCParticle #65 with name pi+
using EDM4hep Hit #2 1s relatec to MCParticle #65 with name pi+
using EDM4hep.RootIO Hit #3 1s related to MCParticle #65 with name pi+

Hit #4 1s related to MCParticle #65 with name pi+
cd(@ DIR) Hit #5 1s related to MCParticle #66 with name pi-

T Hit #6 1s related to MCParticle #66 with name pi-

f = "ttbar_edmdhep_digi.root" Hit #7 1s related to MCParticle #66 with name pi-

- - Hit #8 1s related to MCParticle #49 with name pi+

reader = RootIO.Reader(f) Hit #9 1s related to MCParticle #49 with name pi+
events = RootIO.get(reader, "events") Hit #10 is related to MCParticle #49 with name pi+

Hit #11 is related to MCParticle #27 with name K-
evt = events|[1]; Hit #12 is related to MCParticle #27 with name K-

Hit #13 is related to MCParticle #27 with name K-
hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection") Hit #14 1s related to MCParticle #35 with name e-
mcps = RootIO.get(reader, evt, "MCParticle") Hit #15 1s related to MCParticle #95 with name e-
for hit in hits

end

#---Loop over events—-—-—————————————————————————

for

end

println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index) with name $(hit.mcparticle.name)")

(n,e) in enumerate(events)
ps = RootIO.get(reader, e, "MCParticle")
println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))")

~ 1500 times faster than Python

19

Example Analysis (FCCee)

* Created a more complete example of a FCCee analysis (higgs /mH-
recoil /mumu)

* These are the steps:

« 1. Installation and setup. No need to install anything (except for Julia itself :-))

« 2. Load the necessary modules (all registered!)

using EDM4hep

using EDM4hep.RootIO

using EDM4hep.SystemOfUnits
using EDM4hep.Histograms

https://github.com/HEP-FCC/FCCAnalyses/tree/b408bdc20de60cecb6d8fee2e6c3fe7ca680e5bc/examples/FCCee/higgs/mH-recoil
https://github.com/HEP-FCC/FCCAnalyses/tree/b408bdc20de60cecb6d8fee2e6c3fe7ca680e5bc/examples/FCCee/higgs/mH-recoil
https://julialang.org/downloads/

Example - Creating Analysis Functions

3. Creating analysis functions using EDM4hep types and reusing convenient
existing Julia packages (e.g. LorentzVectorHEP, Combinatorics)

« It shows the power of software re-use of Julia Use the EDM4hep
high-level objects

directly
re—-using convenlient existing packages
using LorentzVectorHEP
using Combinatorics

function resonanceBuilder(rmass::AbstractFloat, legs::AbstractVector{ReconstructedParticle})
result = ReconstructedParticlel]
length(legs) < 2 && return result
for (a,b) in combinations(legs, 2)
lv = LorentzVector(a.energy, a.momentum...) + LorentzVector(b.energy, b.momentum...)
rcharge = a.charge + b.charge
push!(result, ReconstructedParticle(mass=mass(1lv), momentum=(1lv.x, 1lv.y, 1lv.z), charge=rcharge))

end
sort!(result, 1t = (a,b) -> abs(rmass-a.mass) < abs(rmass-b.mass)) ——
return result[1:1] # take the best one Use Julia algorithms

end:

e A

Example - Define Histograms

* 4, Define a custom structure with the wanted histograms

* 5. And a function to plot them

using Parameters
using Plots
@with_kw struct Histograms

mz = H1ID("m_{Z} [GeV]",125,0,250, unit=:GeV)

mz_zoom = HID("m {Z} [GeV]",40,80,100, unit=:GeV)

Llr_m = H1D("Z leptonic recoil [GeV]", 100, 0, 200, unit=:GeV) — =
Llr_m_zoom = HID("Z leptonic recoil [GeV]", 200, 80, 160, unit=:GeV)
Lr_m_zoom4 = HID("Z leptonic recoil [GeV]", 800, 120, 140, unit=:GeV)
Lr_m_zoom5 = H1ID("Z leptonic recoil [GeV]", 2000, 120, 140, unit=:GeV)

lr m_zoom6 = H1D("Z leptonic recoil [GeV]', 100, 130.3, 132.5, unit=:GeV)

end
function do_plot(histos::Histograms)
img = plot(layout=(5,2), show=true, size=(1000,1500))
for (i,fn) in enumerate(fieldnames(Histograms))
h = getfield(histos, fn)
plot!(subplot=i, h.hist, title=h.title, show=true, cgrad=:plasma)
end
return 1img
end
myhists = Histograms()

Added a thin-layer
on top of FHist
histograms

Example - Open data file

* 6. Using a file from the winter2023 production in EOS

+ ROQT file with TTree called “events” with 100k events and 262 branches/
leaves

« PODIO version “0.16.2" (old layout of collections and relations)

f = "root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/p8_ee_ZZ ecm240/
events 000189367.root"

reader = RootIO.Reader(f);
events = RootIO0.get(reader, "events");

2o

Example - The Event Loop

7

for evt 1n events

#———qget the collection of ReconstructedParticles and Muons
recps RootIO.get(reader, evt, "ReconstructedParticles"); —
muons RootIO.get(reader, evt, "Muon#0"; btype=0bjectID{ReconstructedParticle})

sel_muons = filter(x —> p,(x) > 10GeV, muons)

of ObjectIDs (need to
specify the type)

Get the needed collections.
[he Muon#0 is a collection |

zed_leptonic_recoil = recoilBuilder(240GeV, zed_leptonic)

if length(zed_ leptonlc) == 1 # Filter to have exactly one Z candidate

zed _leptonic = resonanceBuilder(91GeV, sel_muons) |

l new objects

Filter and create

Zcand_m = zed_leptonic[1].mass
Zcand_recoil_m = zed_leptonic_recoill[1].mass -—§=;‘“*---‘~‘~‘~‘-‘~‘-‘
Zcand_qg = zed_leptonic[1].charge ’

——

1t 80GeV <= annd —m <= 100GeV
#-——Fill histograms now—-——————————————————
push!(myhists.mz, Zcand_m)

Event sections

push! (myhists.mz_zoom, Zcand_m)
push! (myhists.lr_m, Zcand_recoil_m)

push!(myhists.lr_m_zoom6, Zcand_recoil_m)
end l

end

|

Fill the required
histograms

end

img = do_plot(myhists)
display("image/png", img)

24

m_{Z} [GeV] m_{Z} [GeV]

000 =~
' Entries = 5008 00
500 F .'S‘t(:iagc:v9=1£2 a0 |
Overflow = false
000 r 300
200 +
xample - hesults | |
b ; 5; 100 1;0 2;0 2;0 ' 80 85 90 95 100
! Z leptonic recoil [GeV] Z leptonic recoil [GeV]
200 F v 7
KX 8 F " H 1 t th h t o | Py | o -
* 0. I'lld Y, P1O € NISTOZrams o i) |
600 =~
0.4
400 *
® s e 200 F o2
* histograms plots not very nice o .
Z leptonic recoil [GeV] Z leptonic recoil [GeV]

* What about the performance?

100 r

50 Fr

* in this example we can process ~8200 |
eventS/S (On lcgapp_cent087-thSica1) P Z leptonic recoil [GeV] o Z leptonic recoil [GeV]

120 125 130 135

-
i
(=

* somehow a bit slower than FCCAnalyses
framework (Python+C++) ~9500 events/s

120 125 130 135 140 120 125 130 135 140

Z leptonic recoil [GeV]

* further optimisation makes only sense ‘|
with RNTuple

120 125 130 135 140

What's Next?

* Validation of RNTuple with RC2
* Optimization

* Multi-threading support

* Multi-file support

26

Conclusions

* Demonstrated that Data Analysis can be done using ‘high-level objects” instead of
resigning yourself to use ‘flat n-tuples’

* Imagine Open Data analysis: very powerful with minimal required infrastructure
* The performance is not bad, but probably can be improved a bit further
* Missing quite a lot of HEP utilities

« e.g. Fitting, ergonomic and good looking histograms, etc.

* We could start building them from now

* Package EDM4hep.jl is registered and ready to be used!

“ eager to get bug reports and issues (and contributions :-))

27

https://github.com/peremato/EDM4hep.jl

